Assessment of Pile Vibrations in Various Soil Layers
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Abstract. The calculation of pile foundations should be carried out using mathematical models that describe their
mechanical behavior. The design scheme can be represented both in analytical and numerical forms. When determining
the bearing capacity and settlement of single piles, preference should be given to tabulated or analytical solutions provided
in construction standards and regulations. All calculations of piles, pile foundations, and their bases should be performed
using the design values of material and soil properties. This paper presents the results of an assessment of the influence of
the excitation frequency of the pile foundation base on the amplitudes of transverse vibrations of a pile interacting with a
two-layer soil according to the Winkler model.

INTRODUCTION

According to the provisions of SNIP 11-7-81 “Construction in Seismic Regions”, the design model of the “pile—
soil medium” system [1] must be selected taking into account the most significant factors that determine the stress
state and deformations of the foundation and structural elements of the building (the structural scheme of the building,
construction features, the nature of soil layers, the properties of foundation soils, and the possibility of their changes
during construction and operation, etc.).

When designing pile foundations, the following factors should be taken into account: soil conditions of the
construction site, hydrogeological regime, features of pile installation, and the presence of slurry beneath the pile tips.
The design values of soil properties should be determined in accordance with GOST 20522, and the design values of
the subgrade reaction coefficients of the soil surrounding the pile - in accordance with Appendix [1].

Studies [2-5] present analyses and results of investigations on pile foundations interacting with various types of
collapsible soils. The main requirements for pile foundation structures are outlined in manuals [6-8]. The methodology
for calculating pile foundations under the influence of seismic waves and kinematic excitations is described in works
[9].

In this paper, the vibration process of a pile foundation interacting with the base according to the Winkler model,
where the base undergoes kinematic excitation, is considered.

PROBLEM STATEMENT

Let us set the origin of coordinates at the lower cross-section of the beam and direct the OX axis vertically upward.
Let W;(x,t) and W,(x,t) denote the deflections of the beam in each zone (Figure 1), which satisfy the following
equations
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where kj is the stiffness coefficient of the contact during shear at the lower cross-section of the beam with the base,
which moves according to the law W, = W, (t), M is the mass of the attached body (pile cap) at the upper cross-
section of the beam.
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FIGURE 1. Scheme of the transverse bending of a beam carrying a concentrated mass M. Here, EJ is the flexural rigidity of the
beam, m is the mass per unit length, k1 and k2 are the subgrade reaction coefficients for each zone of beam-soil contact, with
corresponding lengths / and L-/, and L is the total length of the beam.

We assume W, (t) = Uysinwt (U, - amplitude, w - frequency) and represent the solutions of equations (1) and (2)
in the form of
W; = U, (x) sinwt, W, = U,(x)sinwt
where the functions U; (x) and U, (x) satisfy the equations

EJUY + (k; —mo®)U; =0 0<x <1 (6)
EJUY + (ky —mw®)U, =0 I <x <L (7)
boundary
U1(0) =0, EJU;"(0) = ko[U1(0) — Uo] ®)
Uy (L) =0, EJU;'(L) = —Mw?Uy(L) ©)
matching conditions
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METHOD OF SOLUTION

When performing the calculations, we assume that k; > 4k,
1. We consider the case w < /k,/m (Case 1).

The general solution of equations (6) and (7) can be written as:
Up = CY1(By = (§ — 1) + GYo(By + (§ — 1)) + C3Y5(By * (§ — 1)) + C4Y,(By + (§ — 11))

Uy = CiSi B¢ = D]+ G525, (B2 = D]+ B3 S5, 18, = 1D + By 25,6, - 1]
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Y:(B2), Si(Bz) are Krylov functions [5], defined by the formulas:
Y, = cos ByzchB,z, Y, = (sin B zchfB,z + cos B zshp,z),
Y; = sinByzshp,z, Y, = (sinB,zchB,z — cos B,zshp;z),
S, = cos ByzchB,z, S, = (sin ByzchB,z + cos B,zshf,z),
S; = sin ByzshfB,z, S, = (sinByzchP,z — cos ByzshfB,z).
The constants C;, C,, C5 and C, are determined from conditions (8)-(10), which yield:

C. = —B&s12 — Bds11
1 do ’ do

C3 = Ciryq + Coryy, Cp = Gy + (o1,
Sp1 = Q1 T 111823 T 121024, Sz = Qpp + Ti03 + 1200,

]

do = S11S22 = S12521  S11 = Qq1 +T11Q13 + 151044, S1z = Qg + T12043 + 122044,
_ b21b14—b11b2y _ bazb1s—b12b34 _
=45 2= do = bi3bys — by3byy
_ bi11ba3—b31b13 _ bigba3z—b33b13
=45 o T2 -

b21 = aWZS]_(l, W) + b0153 (1, W), b22 = aWZSZ(l, W) % + b0254(1, W),
2
2 3
b23 = aWZS3(1, W)%‘I’ b0352(1, W), b22 = aW254(1, W)%"‘ b0451(1, W),
2 2

by = _2.323: by, = _4322.31» bos = _2,31232' bos = 4.33;
by = —B3Ss(L,w), by = —BFB1Ss(1L,w), byz = BB,S: (1, w), by = BiS,(1,w),
az1 = —2B7Y,(0,w) + B§Y1(0,w), ay, = —4B3Y;(0,w) + B5Y,(0,w),
a3 = =2B7Y,(0,w) + B5Y3(0,w), az, = 4B7Y1(0,w) + B5Y,(0,w)
ayy = —p1Ya(0,w),  ay; =2B,Y1(0,w), ayz = B1Y2(0,w), ay = 2p,Y5(0,w).

RESULTS

The calculations were carried out for the following parameter values:
E=2-10"Pa, a = 03m, h =03m, L =5m, p, = 45-%, M = 3000kg,
N N N
k;=5" 1065, k, = 1065, ko=5" IOSE.
Figure 2 shows the curves of deflection and axial stress ¢ = E hZZTZ distributions along the beam length £=x/L for
various values of the frequency w.
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FIGURE 2. Curves of the distribution of the deflection amplitude U(m) and axial stress ¢ (MPa) along the beam length & =x/L

for two values of the ratio [; = %, at different values of the base vibration frequency w(sex™): 1-w = 1.75, 2-w = 1.78, 3-w =

1.8: 4-w =1.82,:1-w = 1.83
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FIGURE 3. Dependence of the deflection amplitude U(m) on the frequency w(sex™!) at sections x= 0 (curve 1), x= [ (curve
2), and x = L (curve 3) for two values of the ratio [; = %

2. Let\/k:2 <w< ’k—l (Case 2).
m a4m

In this case, the general solution of equations (6) and (7) can be written as:
U= GH(B - (€ — 1)) + GV (B (§ — 1) + GYa(By - (§ — 1) + CuYy(By - (x — 1))
Uz = CS1[Bo(E = 1] + G g SalBa(§ — D] + B3 2 S5[>(€ — ID] + By (2 S,[B,(¢ — 11)]

where, fB; = w2 — w2, B, = 3/w? —w2. Y(Bz), S;(Bz) are Krylov functions [5], defined by the following
formulas:
Y, = cos BizchpBiz, Y, = (sin B,zchpB;z + cos B,zshp;z),
Y; = sin Byzshp,z, Y, = (sin B zchfBz — cos B1zshf;z),
S, = 0.5(chp,z +cos B,z), S, =0.5(shB,z + sinB,z),
S; = 0.5(chpyz —cosB,z), S, = 0.5(shpB,z— sinp,z).
The constants C;, C,, C; and C, are determined from conditions (8)-(10).
Figure 4 shows the curves of deflection distribution along the beam length £ =x/L for various values of the
frequency w.
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FIGURE 4. Curves of the deflection U(m) and axial stress o (MPa) distribution along the beam length ¢ = x / L for two values of
the ratio [; = % at different values of the base vibration frequency ® (i):l-w =22,2-0w=23,3-w=24:4-0 = 2.6.:1-0 =
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FIGURE 5. Dependence of the deflection amplitude on the frequency w (Seix) at sections x= 0 (curve 1),

x= [ (curve 2), and x = L (curve 3) for two values of the ratio l; = %

3. Now consider the case where the external excitation frequency satisfies the inequality w > ’4’:; (Case 3).

In this case, the general solution of equations (6) and (7) can be written as:
Up = C1Y1(By = (§ — 1) + Y2 (By * (§ = 11)) + C5Y5(By * (§ — 1)) + CuY,(By + (§ — 11))

U = CS:lB2(€ = D] + G 525,188 — 1] + B LS, — 101 + By 1 S,6, (6 — 1)

where, f; = Yw? —w}, f = Yw? —wj,
Y:(B2), S;(fz) are Krylov functions [5], defined by the formulas:

Y, = 0.5 % (chB,z +cos B,z), Y, =0.5*(shB,z + sinp,z),
Y; = 0.5 (chByz — cosBiz), Y, = 0.5%(shp,z— sinp;z).
S: = 0.5 % (chfyz +cos B,z), S, =0.5% (shB,z + sinB,z),
S; = 0.5% (chByz — cosB,z), S, = 0.5+ (shp,z— sinp,z).

The constants C;, C,, C; and C, are determined from conditions (8)-(10).

Figure 6 shows the curves of deflection distribution along the beam length for various values of the frequency w.
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FIGURE 6. Curves of the deflection amplitude U (M) and axial stress ¢ (MPa) along the beam length £ =x/L for two values of
the ratio [; = %at different base vibration frequencies w ﬁ l-w=42-0w=42,3-w=454w=46,:1-w =5
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FIGURE 7. Dependence of the deflection amplitude on the frequency w(sex™1) at sections x= 0 (curve 1), x= [ (curve 2), and
x = L (curve 3) for two values of the ratio l; = %

CONCLUSION

Analysis of the results shows a significant influence of external excitation frequencies close to resonance on the
magnitudes of beam deflections and axial stresses. At low frequencies (Figure 2), near the resonance frequency
(1.72 < w < 2), the beam deflections along its length increase monotonically and reach high values as the frequency
approaches resonance. In this case, the tensile stresses attain their maximum values at the lower section of the beam.

For frequencies in the range \/’% <w< /f—; (Case 2), the pattern of deflections and stresses changes: the

deflections of the upper section can become negative, and the entire length of the beam is under compression.

Finally, at high values of the external excitation frequency (Figure 6, Case 3), the beam also remains in
compression, with deflections along the entire length being practically negative, and the largest deflections occurring
at the section where the mass is attached. Increasing the length of the contact zone [ between the two soil conditions
leads to a reduction in both deflections and stress values along the beam.
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