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Abstract. The calculation of pile foundations should be carried out using mathematical models that describe their 

mechanical behavior. The design scheme can be represented both in analytical and numerical forms. When determining 

the bearing capacity and settlement of single piles, preference should be given to tabulated or analytical solutions provided 

in construction standards and regulations. All calculations of piles, pile foundations, and their bases should be performed 

using the design values of material and soil properties. This paper presents the results of an assessment of the influence of 

the excitation frequency of the pile foundation base on the amplitudes of transverse vibrations of a pile interacting with a 

two-layer soil according to the Winkler model. 

INTRODUCTION 

According to the provisions of SNIP II-7-81 “Construction in Seismic Regions”, the design model of the “pile–

soil medium” system [1] must be selected taking into account the most significant factors that determine the stress 

state and deformations of the foundation and structural elements of the building (the structural scheme of the building, 

construction features, the nature of soil layers, the properties of foundation soils, and the possibility of their changes 

during construction and operation, etc.). 

When designing pile foundations, the following factors should be taken into account: soil conditions of the 

construction site, hydrogeological regime, features of pile installation, and the presence of slurry beneath the pile tips. 

The design values of soil properties should be determined in accordance with GOST 20522, and the design values of 

the subgrade reaction coefficients of the soil surrounding the pile - in accordance with Appendix [1]. 

Studies [2-5] present analyses and results of investigations on pile foundations interacting with various types of 

collapsible soils. The main requirements for pile foundation structures are outlined in manuals [6-8]. The methodology 

for calculating pile foundations under the influence of seismic waves and kinematic excitations is described in works 

[9]. 

In this paper, the vibration process of a pile foundation interacting with the base according to the Winkler model, 

where the base undergoes kinematic excitation, is considered. 

PROBLEM STATEMENT 

Let us set the origin of coordinates at the lower cross-section of the beam and direct the OX axis vertically upward. 

Let  𝑊1(𝑥, 𝑡) and 𝑊2(𝑥, 𝑡) denote the deflections of the beam in each zone (Figure 1), which satisfy the following 

equations 

 𝐸𝐽
𝜕4𝑊1

𝜕𝑥4 + 𝑚
𝜕2𝑊1

𝜕𝑡2 + 𝑘1𝑊1 = 0  for  0 < 𝑥 < 𝑙   (1) 
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 𝐸𝐽
𝜕4𝑊2

𝜕𝑥4 + 𝑚
𝜕2𝑊2

𝜕𝑡2 + 𝑘2𝑊2 = 0 for  𝑙 < 𝑥 < 𝐿    (2) 

The functions 𝑊1(𝑥, 𝑡) and  𝑊2(𝑥, 𝑡) satisfy the following boundary conditions 

 
𝜕𝑊1

𝜕𝑥
= 0,  𝐸𝐽

𝜕3𝑊1

𝜕𝑥3 = 𝑘0(𝑊1 − 𝑊0)  at  𝑥 = 0    (3) 

 
𝜕2𝑊1

𝜕𝑥2 = 0,  𝐸𝐽
𝜕3𝑊1

𝜕𝑥3 = 𝑀
𝜕2𝑊1

𝜕𝑡2   at  𝑥 = 𝐿   (4) 

under compatibility conditions 

 {
𝑊1 = 𝑊2,

𝜕W1

𝜕𝑥
=

𝜕𝑊2

𝜕𝑥
,

𝜕2𝑊1

𝜕𝑥2 =
𝜕2𝑊2

𝜕𝑥2 ,
𝜕3𝑊1

𝜕𝑥3 =
𝜕3𝑊2

𝜕𝑥3

   at   𝑥 = 𝑙      (5) 

where 𝑘0 is the stiffness coefficient of the contact during shear at the lower cross-section of the beam with the base, 

which moves according to the law 𝑊0 = 𝑊0(𝑡), 𝑀 is the mass of the attached body (pile cap) at the upper cross-

section of the beam. 

 

FIGURE 1. Scheme of the transverse bending of a beam carrying a concentrated mass M. Here, EJ is the flexural rigidity of the 

beam, m is the mass per unit length, k1 and k2 are the subgrade reaction coefficients for each zone of beam-soil contact, with 

corresponding lengths l and L-l, and L is the total length of the beam. 

 

We assume 𝑊0(𝑡) = 𝑈0𝑠𝑖𝑛𝜔𝑡 (𝑈0 - amplitude, 𝜔 - frequency) and represent the solutions of equations (1) and (2) 

in the form of 

 𝑊1 = 𝑈1(𝑥) sin 𝜔𝑡,   𝑊2 = 𝑈2(𝑥)sin𝜔𝑡  

where the functions 𝑈1(𝑥) and 𝑈2(𝑥) satisfy the equations 

 𝐸𝐽𝑈1
𝐼𝑉 + (𝑘1 − 𝑚𝜔2)𝑈1 = 0  0 < 𝑥 < 𝑙      (6) 

 𝐸𝐽𝑈2
𝐼𝑉 + (𝑘2 − 𝑚𝜔2)𝑈2 = 0  𝑙 < 𝑥 < 𝐿          (7) 

boundary 

 𝑈1
′(0) = 0,     𝐸𝐽𝑈1

′′′(0) = 𝑘0[𝑈1(0) − 𝑈0]     (8) 

 𝑈2
′′(𝐿) = 0,    𝐸𝐽𝑈2

′′′(𝐿) = −𝑀𝜔2𝑈2(𝐿)   (9) 

matching conditions 

 𝑈1(𝑙) = 𝑈2(𝑙),   𝑈1
′(𝑙) = 𝑈2

′ (𝑙), 𝑈1
′′(𝑙) = 𝑈2

′′(𝑙),   𝑈1
′′′(𝑙) = 𝑈2

′′′(𝑙)    (10) 

METHOD OF SOLUTION 

When performing the calculations, we assume that 𝑘1 ≥ 4𝑘2 

1. We consider the case 𝜔 < √𝑘2/𝑚 (Case 1). 

The general solution of equations (6) and (7) can be written as: 

𝑈1 = 𝐶1𝑌1(𝛽1 ∗ (𝜉 − 𝑙1)) + 𝐶2𝑌2(𝛽1 ∗ (𝜉 − 𝑙1)) + 𝐶3𝑌3(𝛽1 ∗ (𝜉 − 𝑙1)) + 𝐶4𝑌4(𝛽1 ∗ (𝜉 − 𝑙1))  

𝑈2 = 𝐶1𝑆1[𝛽2(𝜉 − 𝑙1)] + 𝐶2
𝛽1

𝛽2
𝑆2[𝛽2(𝜉 − 𝑙1)] + 𝐵3

𝛽1
2

𝛽2
2 𝑆3[𝛽2(𝜉 − 𝑙1)] + 𝐵4

𝛽1
3

𝛽2
3 𝑆4[𝛽2(𝜉 − 𝑙1)]  

where 𝑤 = √
𝑚𝜔2𝐿4

𝐸𝐽
,   𝛽1 = √w1

2 − 𝑤24
, 𝛽2 = √w2

2 − 𝑤24
,    𝑤1 = √

𝑘1𝐿4

4𝐸𝐽
,       𝑤2 = √

𝑘2𝐿4

𝐸𝐽
,     𝑙1 = 𝑙/𝐿.  
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𝑌i(𝛽𝑧), 𝑆i(𝛽𝑧) are Krylov functions [5], defined by the formulas: 

 𝑌1 = cos 𝛽1𝑧𝑐ℎ𝛽1𝑧,    𝑌2 = (sin 𝛽1𝑧𝑐ℎ𝛽1𝑧 + cos 𝛽1𝑧𝑠ℎ𝛽1𝑧),  

 𝑌3 = sin 𝛽1𝑧𝑠ℎ𝛽1𝑧,    𝑌4 = (sin 𝛽1𝑧𝑐ℎ𝛽1𝑧 − cos 𝛽1𝑧𝑠ℎ𝛽1𝑧),  

 𝑆1 = cos 𝛽2𝑧𝑐ℎ𝛽2𝑧, 𝑆2 = (sin 𝛽2𝑧𝑐ℎ𝛽2𝑧 + cos 𝛽2𝑧𝑠ℎ𝛽2𝑧),  

 𝑆3 = sin 𝛽2𝑧𝑠ℎ𝛽2𝑧,    𝑆4 = (sin 𝛽2𝑧𝑐ℎ𝛽2𝑧 − cos 𝛽2𝑧𝑠ℎ𝛽2𝑧).  

The constants 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are determined from conditions (8)-(10), which yield: 

 𝐶1 =
−𝛽0

2𝑠12

𝑑0
,   𝐶2 =

𝛽0
2𝑠11

𝑑0
,  

 𝐶3 = 𝐶1𝑟11 + 𝐶2𝑟12 , 𝐶4 = 𝐶1𝑟21 + 𝐶2𝑟22,  

 s21 = 𝑎21 + 𝑟11𝑎23 + 𝑟21𝑎24,      s22 = 𝑎22 + 𝑟12𝑎23 + 𝑟22𝑎24,  

 𝑑0 = 𝑠11𝑠22 − 𝑠12𝑠21    s11 = 𝑎11 + 𝑟11𝑎13 + 𝑟21𝑎14,      s12 = 𝑎12 + 𝑟12𝑎13 + 𝑟22𝑎14,  

 𝑟11 =
𝑏21𝑏14−𝑏11𝑏24

𝑑
, 𝑟12 =

𝑏22𝑏14−𝑏12𝑏24

𝑑
, 𝑑0 = 𝑏13𝑏24 − 𝑏23𝑏14  

 𝑟21 =
𝑏11𝑏23−𝑏21𝑏13

𝑑
,      𝑟22 =

𝑏12𝑏23−𝑏22𝑏13

𝑑
,  

 𝑏21 = 𝛼𝑤2𝑆1(1, 𝑤) + 𝑏01𝑆3(1, 𝑤), 𝑏22 = 𝛼𝑤2𝑆2(1, 𝑤)
𝛽1

𝛽2
+ 𝑏02𝑆4(1, 𝑤),  

 𝑏23 = 𝛼𝑤2𝑆3(1, 𝑤)
𝛽1

2

𝛽2
2 + 𝑏03𝑆2(1, 𝑤), 𝑏22 = 𝛼𝑤2𝑆4(1, 𝑤)

𝛽1
3

𝛽2
3 + 𝑏04𝑆1(1, 𝑤),  

 𝑏01 = −2𝛽2
3,    𝑏02 = −4𝛽2

2𝛽1,    𝑏03 = −2𝛽1
2𝛽2,    𝑏04 = 4𝛽1

3,  

 𝑏11 = −𝛽2
3𝑆3(1, 𝑤),    𝑏12 = −𝛽2

2𝛽1𝑆4(1, 𝑤),    𝑏13 = 𝛽1
2𝛽2𝑆1(1, 𝑤), 𝑏14 = 𝛽1

3𝑆2(1, 𝑤),  

 𝑎21 = −2𝛽1
3𝑌2(0, 𝑤) + 𝛽0

2𝑌1(0, 𝑤), 𝑎22 = −4𝛽1
3𝑌3(0, 𝑤) + 𝛽0

2𝑌2(0, 𝑤),  

 𝑎23 = −2𝛽1
3𝑌4(0, 𝑤) + 𝛽0

2𝑌3(0, 𝑤), 𝑎24 = 4𝛽1
3𝑌1(0, 𝑤) + 𝛽0

2𝑌4(0, 𝑤)  

 𝑎11 = −𝛽1𝑌4(0, 𝑤),      𝑎12 = 2𝛽1𝑌1(0, 𝑤),   𝑎13 = 𝛽1𝑌2(0, 𝑤), 𝑎14 = 2𝛽1𝑌3(0, 𝑤).  

RESULTS 

The calculations were carried out for the following parameter values: 

 𝐸 = 2 ∙ 1011Pа, 𝑎 = 0.3m, ℎ = 0.3m, 𝐿 = 5m,  𝜌0 = 45
kg

m
, М = 3000kg,   

𝑘1 = 5 ∙ 106
N

m2
,  𝑘2 = 106

N

m2
,  𝑘0 = 5 ∙ 105

N

m2
. 

Figure 2 shows the curves of deflection and axial stress 𝜎 = 𝐸ℎ
𝑑2𝑈

𝑑𝑥2 distributions along the beam length 𝜉=x/L for 

various values of the frequency 𝜔. 
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FIGURE 2. Curves of the distribution of the deflection amplitude 𝑈(м) and axial stress 𝜎 (MPa) along the beam length 𝜉 =x/L 

for two values of the ratio 𝑙1 =
𝑙

𝐿
, at different values of the base vibration frequency 𝜔(𝑠ек−1): 1-𝜔 = 1.75,  2-𝜔 = 1.78,  3-𝜔 =

1.8:  4-𝜔 = 1.82,: 1-𝜔 = 1.83 

 
FIGURE 3. Dependence of the deflection amplitude 𝑈(м) on the frequency 𝜔(𝑠ек−1) at sections х= 0 (curve 1), х= 𝑙  (curve 

2), and 𝑥 = 𝐿 (curve 3) for two values of the ratio 𝑙1 =
𝑙

𝐿
 

 

2. Let √
𝑘2

𝑚
< 𝜔 < √

𝑘1

4𝑚
  (Case 2).  

In this case, the general solution of equations (6) and (7) can be written as: 

 𝑈1 = 𝐶1𝑌1(𝛽1 ∙ (𝜉 − 𝑙1)) + 𝐶2𝑌2(𝛽1 ∙ (𝜉 − 𝑙1)) + 𝐶3𝑌3(𝛽1 ∙ (𝜉 − 𝑙1)) + 𝐶4𝑌4(𝛽1 ∙ (𝑥 − 𝑙1))  

 𝑈2 = 𝐶1𝑆1[𝛽2(𝜉 − 𝑙1)] + 𝐶2
𝛽1

𝛽2
𝑆2[𝛽2(𝜉 − 𝑙1)] + 𝐵3

𝛽1
2

𝛽2
2 𝑆3[𝛽2(𝜉 − 𝑙1)] + 𝐵4

𝛽1
3

𝛽2
3 𝑆4[𝛽2(𝜉 − 𝑙1)]  

where , 𝛽1 = √w1
2 − 𝑤24

, 𝛽2 = √𝑤2 − w2
24

.   𝑌i(𝛽𝑧) ,   𝑆i(𝛽𝑧)  are Krylov functions [5], defined by the following 

formulas: 

 𝑌1 = cos 𝛽1𝑧𝑐ℎ𝛽1𝑧,      𝑌2 = (sin 𝛽1𝑧𝑐ℎ𝛽1𝑧 + cos 𝛽1𝑧𝑠ℎ𝛽1𝑧),    

 𝑌3 = sin 𝛽1𝑧𝑠ℎ𝛽1𝑧,    𝑌4 = (sin 𝛽1𝑧𝑐ℎ𝛽1𝑧 − cos 𝛽1𝑧𝑠ℎ𝛽1𝑧),  

 𝑆1 = 0.5(𝑐ℎ𝛽2𝑧 +cos 𝛽2𝑧),      𝑆2 = 0.5(𝑠ℎ𝛽2𝑧 + sin 𝛽2𝑧),  

 𝑆3 = 0.5 ( 𝑐ℎ𝛽2𝑧 − 𝑐𝑜𝑠𝛽2𝑧),    𝑆4 = 0.5(sh 𝛽2𝑧 − sin 𝛽2𝑧).  

The constants 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are determined from conditions (8)-(10). 

Figure 4 shows the curves of deflection distribution along the beam length 𝜉=x/L for various values of the 

frequency 𝜔. 
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FIGURE 4. Curves of the deflection 𝑈(м) and axial stress 𝜎 (MPa) distribution along the beam length ξ = x / L for two values of 

the ratio 𝑙1 =
𝑙

𝐿
   at different values of the base vibration frequency ω (

1

𝑠ек
):1-𝜔 = 2.2, 2-𝜔 = 2.3, 3-𝜔 = 2.4: 4-𝜔 = 2.6,:1-𝜔 =

3.2 

 

FIGURE 5. Dependence of the deflection amplitude on the frequency 𝜔 (
1

𝑠ек
)  at sections х= 0 (curve 1),  

х= 𝑙 (curve 2), and 𝑥 = 𝐿 (curve 3) for two values of the ratio 𝑙1 =
𝑙

𝐿
. 

3. Now consider the case where the external excitation frequency satisfies the inequality 𝜔 > √
𝑘1

4𝑚   
 (Case 3). 

In this case, the general solution of equations (6) and (7) can be written as: 

 𝑈1 = 𝐶1𝑌1(𝛽1 ∗ (𝜉 − 𝑙1)) + 𝐶2𝑌2(𝛽1 ∗ (𝜉 − 𝑙1)) + 𝐶3𝑌3(𝛽1 ∗ (𝜉 − 𝑙1)) + 𝐶4𝑌4(𝛽1 ∗ (𝜉 − 𝑙1))  

 𝑈2 = 𝐶1𝑆1[𝛽2(𝜉 − 𝑙1)] + 𝐶2
𝛽1

𝛽2
𝑆2[𝛽2(𝜉 − 𝑙1)] + 𝐵3

𝛽1
2

𝛽2
2 𝑆3[𝛽2(𝜉 − 𝑙1)] + 𝐵4

𝛽1
3

𝛽2
3 𝑆4[𝛽2(𝜉 − 𝑙1)]  

where, 𝛽1 = √𝑤2 − w1
24

, 𝛽2 = √𝑤2 − w2
24

,     
𝑌i(𝛽𝑧), 𝑆i(𝛽𝑧) are Krylov functions [5], defined by the formulas: 

 𝑌1 = 0.5 ∗ (𝑐ℎ𝛽1𝑧 +cos 𝛽1𝑧),      𝑌2 = 0.5 ∗ (𝑠ℎ𝛽1𝑧 + sin 𝛽1𝑧),    

 𝑌3 = 0.5 ∗ ( 𝑐ℎ𝛽1𝑧 − 𝑐𝑜𝑠𝛽1𝑧),    𝑌4 = 0.5 ∗ (sh 𝛽1𝑧 − sin 𝛽1𝑧).  

 𝑆1 = 0.5 ∗ (𝑐ℎ𝛽2𝑧 +cos 𝛽2𝑧),      𝑆2 = 0.5 ∗ (𝑠ℎ𝛽2𝑧 + sin 𝛽2𝑧),    

 𝑆3 = 0.5 ∗ ( 𝑐ℎ𝛽2𝑧 − 𝑐𝑜𝑠𝛽2𝑧),    𝑆4 = 0.5 ∗ (sh 𝛽2𝑧 − sin 𝛽2𝑧).  

The constants 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are determined from conditions (8)-(10). 

Figure 6 shows the curves of deflection distribution along the beam length for various values of the frequency 𝜔. 
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FIGURE 6. Curves of the deflection amplitude 𝑈(м) and axial stress 𝜎 (MPa) along the beam length 𝜉 =x/L for two values of 

the ratio 𝑙1 =
𝑙

𝐿
 at different base vibration frequencies 𝜔 (

1

𝑠ек
):1-𝜔 = 4, 2-𝜔 = 4.2, 3-𝜔 = 4.5: 4-𝜔 = 4.6,:1-𝜔 = 5 

 

FIGURE 7. Dependence of the deflection amplitude on the frequency 𝜔(𝑠ек−1) at sections х= 0 (curve 1), х= 𝑙 (curve 2), and 

𝑥 = 𝐿 (curve 3) for two values of the ratio 𝑙1 =
𝑙

𝐿
. 

CONCLUSION 

Analysis of the results shows a significant influence of external excitation frequencies close to resonance on the 

magnitudes of beam deflections and axial stresses. At low frequencies (Figure 2), near the resonance frequency 
(1.72 < 𝜔 < 2), the beam deflections along its length increase monotonically and reach high values as the frequency 

approaches resonance. In this case, the tensile stresses attain their maximum values at the lower section of the beam. 

For frequencies in the range √
𝑘2

𝑚
< 𝜔 < √

𝑘1

4𝑚
 (Case 2), the pattern of deflections and stresses changes: the 

deflections of the upper section can become negative, and the entire length of the beam is under compression. 

Finally, at high values of the external excitation frequency (Figure 6, Case 3), the beam also remains in 

compression, with deflections along the entire length being practically negative, and the largest deflections occurring 

at the section where the mass is attached. Increasing the length of the contact zone 𝑙 between the two soil conditions 

leads to a reduction in both deflections and stress values along the beam. 
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