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Abstract. The flow around a cylindrical rod embedded in a layer of elastic medium in which a plane wave propagates was 

studied. It is assumed that the cylinder, under the action of a distributed force on the surface and ends, performs only 

horizontal movement. To solve the problem, the variational method of V.Z. Vlasov and the Fourier method were used. The 

results are presented as a function of the displacement of the rod's middle cross-section relative to the moving soil over 

time for different values of Young's modulus, as well as in the form of longitudinal stress curves in the initial cross-section 

of the rod over time. It was found that the maximum stress values over time in the section are achieved after the complete 

passage of the wave along the length of the rod. 

INTRODUCTION 

As is known, the basis of the variational principle of mechanics is the assertion that in real processes some 

functionals have stationary values. These principles dictate a special structure of the equations of mechanics, reflecting 

the properties of reciprocity of physical effects: the action of one field on another generates a reverse, in a sense, 

symmetrical effect. The soils used in the dynamics of underground pipelines are a structurally heterogeneous layered 

continuous medium, the state of which is generally determined by nonlinear laws of deformation. The relationship 

between the deformation of layers located parallel to the pipeline axis and forming the structural composition of the 

medium under static conditions has been studied in sufficient detail in [1-6]. Based on the criterion of taking into 

account all the properties of the environment, a distinction is made between a model of general deformations (an 

example is the model of a linearly deformed half-space) and various models of local deformations, among which the 

most widely used is the Winkler (Winkler-Pasternak) model [3-5]. The main disadvantage of this model is that it does 

not have the ability to “distribute” the load, while experience shows that it does not come into contact with the 

underground structure, in particular with the pipeline. Soil deformation also occurs beyond the loaded area. This 

circumstance necessitates the refinement of foundation calculation models and the development of methods for 

calculating complex structures that take into account the spatial flexibility of the soil. In contrast to this model, based 

on the general variational principle, in works [6-8] a technical theory for calculating a structure on an elastic foundation 

is proposed, which is more accurate and at the same time simpler, which is very flexible and allows solving not only 

the basic problems of calculating beams and slabs on an elastic foundation. 

METHODOLOGY 

Based on the model of the medium, we consider an elastic cylindrical layer of the medium with a total thickness 

R, a deformable circular rod of radius a and length L concentrically embedded in it. We set the origin of the polar 



coordinate in the initial section of the rod at point 0 and direct the 0z axis along the axis of the rod, and the 0r axis 

perpendicular to it (Fig.1). We assume that the zone of rod penetration is determined by the region 0<r<a, 0<z<L. We 

denote by u(r, z, t) and v(r, z, t) the displacement of soil particles in the directions of the axes 0r and 0z in axisymmetric 

coordinates (r, z), t is time.  

 

FIGURE 1. Diagram of longitudinal wave flow around a rod embedded in a layer of a medium 

The components of the stress tensor are represented in the form.  
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E0 and ν0 are Young's modulus and Poisson's ratio of the soil environment.  

We assume that a plane wave propagates through the layer, behind the front of which the longitudinal displacement 

of particles of the medium v is given by the law  

( )00 / cztwvc −=  

here 
0

0
0



E
c =  is the propagation speed of the longitudinal wave in the layer  

We assume that the rod performs, under the action of a distributed force on the surface and ends, a predominantly 

horizontal movement, and in connection with this, we further adopt u(r, z, t)≈0. The displacement of layer particles 

v(r, z, t) and the rod cross-section v1(z, t) relative to the moving soil particles is denoted by W1(z, t) and w(r, z, t), 

respectively. 
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We consider the layer to be an elastic medium consisting of three zones with known mechanical properties. The 

first is the region occupied by the rod a≤r<R, 0<z<L. In this region, the movement occurs in the direction of the 0z 

axis and the layer thickness is selected, according to work [6], as a function of the variable r, in such a way that the 

movement of the layer particles is represented in the form  

 ( ) ( )rtzWw 11 , =  for 0<z<L, a≤r<R (7) 

The second zone L<z<∞, 0≤r<R consists of two parts. In the first part L<z<∞, 0≤r<a the displacement is 

represented as  

 

 ( ) ( ) ( )rtzWtzrw 222 ,,, =  for L<z<∞, 0≤r<a (8) 

In the second part we assume  

 ( ) ( ) ( )rtzWtzrw 121 ,,, =  for L<z<∞, a≤r<R (9) 

The third zone -∞<z<0, 0≤r<R also consists of two parts, where the displacements are represented as  



 ( ) ( ) ( )rtzWtzrw 232 ,,, =  for -∞<z<0, 0≤r<a (10) 

 ( ) ( ) ( )rtzWtzrw 131 ,,, =  for -∞<z<0, a≤r<R (11) 

Following the work [6], we compile the work of external normal forces for all zones in relation to the selected 

annular strip, where φ(a)=1 is taken  
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where p(z, t) is the intensity of the tangential forces on the lateral surface of the rod, q1(z, t) and q2(z, t) are the 

distributed loads acting on the right and left ends  

Using dependencies (1) and (3) taking into account (5) and (6) from (7) - (9) we obtain  

 ( ) ( ) 












−−=−




−−





0

00112

1

2

1112

1

2

1 ,2
c

z
tvsmtzp

t

W
mWk

z

W
s   for 0<z<L, 0≤r<a (13) 

 ( ) 












−−=




−−





0

00112

21

2

12112

21

2

12
c

z
tvsm

t

W
mWk

z

W
s   for L<z<∞, a≤r<R (14) 

 ( ) ( ) 












−−=−




−−





0

002212

22

2

22222

22

2

2 ,22
c

z
tvsmtzaq

t

W
mWk

z

W
s   for L<z<∞, 0≤r<a (15) 

 ( ) 












−−=




−−





0

00112

31

2

13112

31

2

12
c

z
tvsm

t

W
mWk

z

W
s   for -∞<z<0, a≤r<R (16) 

 ( ) ( ) 












−−=+




−−





0

002222

32

2

23222

32

2

2 ,22
c

z
tvsmtzaq

t

W
mWk

z

W
s   for -∞<z<0, 0≤r<a (17) 

where 
( )

( )+
=

R

a

rdrr
v

E
s 2

1
0

0
1

14

2



, 

( )
( ) 

−
=

R

a

rdrr
v

E
k 2

12
0

0
1

14

2



, ( )=

R

a

rdrrm 2
101 2  , 

2
0

1
01

2

c

s
s = ,  

( )
( )+

=

a

rdrr
v

E
s

0

2
2

0

0
2

14

2



, 

( )
( ) 

−
=

a

rdrr
v

E
k

0

2
22

0

0
2

1

2



, ( )=

a

rdrrm

0

2
202 2  , 

2
0

2
02

2

c

s
s =  

We write the equation of motion of the rod in the form  

( ) 0,
2

1

2

2

1

2

=+



−




tzp

t

W
F

z

W
EF   

Substituting the expression p(z, t) from (13) into the last equation, we obtain  
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Following the work [6], in the zones L<z<∞ 0≤r<a and -∞<z<0, 0≤r<a we assume  

 ( ) ( )tWtWW ,010022 == , ( ) ( )tLWtWW ,10132 ==  (19) 

where W00(t) and W01(t) are the displacements of the ends of the rod  

Then from (12) and (14) we determine the loads q1(z, t) and q2(z, t) 
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Along the contours of the ends z=0, z=L of the rod, fictitious forces Q1 and Q2 act with intensities  
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Based on the known expressions for the loads q1(z, t), q2(z, t), Q1 and Q2, it is possible to formulate boundary 

conditions at the ends of the rod.  
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Boundary conditions (20) and (21) contain derivatives of functions W21 and W31 that satisfy equations (14) and 

(16), thus, to determine the solution of equation (18), one must first determine the solutions of equations (14) and (16) 

that satisfy the conditions  

( )tWW 0021 =  for z=L 

( )tWW 0131 =  for z=0 

021 →W  for z→∞ 

031 →W  for z→−∞ 

Let us consider a rigid contact of the ends of the rod with the layer. In this case, the displacement of the ends 

relative to the soil will be zero, i.e., it should be assumed that W00=W01=0. Then the functions q1(z, t) and q2(z, t) are 

determined by the formulas  
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In this case, equations (14), (16) and (18) will not be related through boundary conditions (20) and (21) and will 

be integrated under the conditions  

01 =W  for z=0, z=L  

021 =W  for z=L, 031 =W  for z=0 

021 →W  for z→∞, 031 →W  for z→−∞ 

Conditions (20) and (21) are written as  
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Assuming m1/2s1≈0, equations (14) and (16) are written as  
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with boundary conditions  

 ( ) 0,21 =tLW , ( ) 0,031 =tW  (27) 

 ( ) 0,21 = tW , ( ) 0,31 =− tW  (28) 

We will obtain the solution to equation (18) using the Fourier method [9], according to which we will represent it 

in the form of an expansion  
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Tn satisfies the equations (derivative with respect to the variable (τ))  
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( ) 0vuJ =  dimensionless function of the acceleration of particles of the soil medium behind the wave front, A0 is a 

given value of the dimension of length. 

The solutions of the last equations for Tn with zero initial conditions can be represented as  
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The calculations were carried out by selecting the function φ(r) satisfying the conditions φ(a)=1 and φ(R)=0 in the 

form 
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where J0(z) and K0(z) are Bessel functions of the second kind of zero order. 

The change in the displacement of soil particles behind the wave front is taken according to the law  

( ) 000 expsin −=v  

where the dimensionless quantities ω0 and α0 are expressed through the frequency ω00, the length of the rod L and the 

coefficient of friction according to the formulas  

cL /000  = , cL /000  =   

RESULTS 

The calculations were performed for different values of Young's modulus E0 of the medium, with the initial data 

E=4·104МPа, ρ=5000kg/m3, ρ0=1700kg/m3, R=1m, v0=0.3, a=0.2m, L=10m, A0=0.0005m, ω0=5(1/s), α00=1(1/s).  

The results of calculations of the dependence of the displacement W1(0.5L, t) (m) of the average cross-section of 

the rod relative to the moving soil on time t(sec) for different values of Young's modulus E0 are presented in Fig. 2 (a. 

b), where Fig. 2a shows the changes in the displacement of the cross-section for moments in time when the wave front 

flows around the full length of the rod. In this case, the fronts of the wave propagating in the rod and soil reach the 

end section in 0.017 sec and 0.35 sec, respectively. It is evident that the maximum displacement values in the cross-

section of the rod decrease with increasing Young's modulus and reach their maximum after the rod is completely 

flown around by a wave propagating in the soil. 

Fig. 3 shows the curves of the dependence of the longitudinal stress σ (MPa) in the initial section of the rod on 

time t (sec). From the analysis of the curves it follows that the maximum values of stress over time in the section are 

achieved after the complete passage of the wave along the length of the rod. In this case, during the interaction of the 

rod with the environment (soil), the change in stress in the rod over time is oscillatory in nature and for the selected 

time intervals, the amplitude of oscillations decreases with an increase in the Young's modulus of the environment. 

 



  
a) b) 

FIGURE 2. Curves of the dependence of the displacement relative to the ground of the average cross-section of the rod 
W1(0.5L, t) on time t(sec) for different values of the Young's modulus of the soil medium E0 (MPa):  

1) E0=35, 2) E0=45, 3) E0=50, 4) E0=70 

  
a) b) 

FIGURE 3. Curves of the dependence of the stress relative to the ground of the average cross-section of the rod W1(0.5L, t) on 

time t(sec) for different values of the Young's modulus of the soil medium E0 (MPa):  

1) E0=35, 2) E0=45, 3) E0=50, 4) E0=70 

CONCLUSION 

The process of flow around a cylindrical rod embedded in a layer of elastic medium is considered. To solve the 

problem, the variational method of V.Z. Vlasov and the Fourier method were used. In this case, wave equations of 

motion were obtained for the horizontal displacement of the rod and the soil environment surrounding it. It was 

established that the fronts of the wave propagating in the rod and soil reach the end section in 0.35 sec and 0.0176 sec, 

respectively. From the analysis of the longitudinal stress curves in the initial cross-section of the rod over time, it was 

found that the maximum stress values over time in the cross-section are achieved after the complete passage of the 

wave along the length of the rod. 
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