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Abstract. The flow around a cylindrical rod embedded in a layer of elastic medium in which a plane wave propagates was
studied. It is assumed that the cylinder, under the action of a distributed force on the surface and ends, performs only
horizontal movement. To solve the problem, the variational method of V.Z. Vlasov and the Fourier method were used. The
results are presented as a function of the displacement of the rod's middle cross-section relative to the moving soil over
time for different values of Young's modulus, as well as in the form of longitudinal stress curves in the initial cross-section
of the rod over time. It was found that the maximum stress values over time in the section are achieved after the complete
passage of the wave along the length of the rod.

INTRODUCTION

As is known, the basis of the variational principle of mechanics is the assertion that in real processes some
functionals have stationary values. These principles dictate a special structure of the equations of mechanics, reflecting
the properties of reciprocity of physical effects: the action of one field on another generates a reverse, in a sense,
symmetrical effect. The soils used in the dynamics of underground pipelines are a structurally heterogeneous layered
continuous medium, the state of which is generally determined by nonlinear laws of deformation. The relationship
between the deformation of layers located parallel to the pipeline axis and forming the structural composition of the
medium under static conditions has been studied in sufficient detail in [1-6]. Based on the criterion of taking into
account all the properties of the environment, a distinction is made between a model of general deformations (an
example is the model of a linearly deformed half-space) and various models of local deformations, among which the
most widely used is the Winkler (Winkler-Pasternak) model [3-5]. The main disadvantage of this model is that it does
not have the ability to “distribute” the load, while experience shows that it does not come into contact with the
underground structure, in particular with the pipeline. Soil deformation also occurs beyond the loaded area. This
circumstance necessitates the refinement of foundation calculation models and the development of methods for
calculating complex structures that take into account the spatial flexibility of the soil. In contrast to this model, based
on the general variational principle, in works [6-8] a technical theory for calculating a structure on an elastic foundation
is proposed, which is more accurate and at the same time simpler, which is very flexible and allows solving not only
the basic problems of calculating beams and slabs on an elastic foundation.

METHODOLOGY

Based on the model of the medium, we consider an elastic cylindrical layer of the medium with a total thickness
R, a deformable circular rod of radius a and length L concentrically embedded in it. We set the origin of the polar



coordinate in the initial section of the rod at point 0 and direct the 0z axis along the axis of the rod, and the Or axis
perpendicular to it (Fig.1). We assume that the zone of rod penetration is determined by the region 0<r<a, 0<z<L. We
denote by u(7, z, ) and v(r, z, ) the displacement of soil particles in the directions of the axes Or and 0z in axisymmetric
coordinates (r, z), t is time.
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FIGURE 1. Diagram of longitudinal wave flow around a rod embedded in a layer of a medium

The components of the stress tensor are represented in the form.
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Ey and vy are Young's modulus and Poisson's ratio of the soil environment.
We assume that a plane wave propagates through the layer, behind the front of which the longitudinal displacement
of particles of the medium v is given by the law
v, = wo(l—z/co)

here ¢, = £o is the propagation speed of the longitudinal wave in the layer

Po
We assume that the rod performs, under the action of a distributed force on the surface and ends, a predominantly
horizontal movement, and in connection with this, we further adopt u(r, z, £)=0. The displacement of layer particles
w(r, z, f) and the rod cross-section vi(z, f) relative to the moving soil particles is denoted by Wi(z, f) and w(r, z, f),
respectively.
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v(r, z,t): w(r, z,t)+ W, (t—z/co) (6)
We consider the layer to be an elastic medium consisting of three zones with known mechanical properties. The
first is the region occupied by the rod a<r<R, 0<z<L. In this region, the movement occurs in the direction of the 0z
axis and the layer thickness is selected, according to work [6], as a function of the variable r, in such a way that the
movement of the layer particles is represented in the form
w=W, (z,t)qo1 (r) for 0<z<L, a<r<R (7
The second zone L<z<oo, 0<r<R consists of two parts. In the first part L<z<oo, 0<r<a the displacement is
represented as

w(r, z, t) =W,, (z, t)¢2 (r) for L<z<w, 0<r<a (8)
In the second part we assume

W(r, z,t) =W, (Z,z‘)¢l (r) for L<z<w, a<r<R 9)
The third zone -00<z<0, 0<r<R also consists of two parts, where the displacements are represented as



r,z,t z,t)p, (r) for -00<z<0, 0<r<a (10)
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w(r, z, t)— W, (z,1)p, (r) for -0<z<0, a<r<R (11)

Following the work [6], we compile the work of external normal forces for all zones in relation to the selected
annular strip, where (p(a)—l is taken
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where p(z, f) is the 1nten51ty of the tangentlal forces on the lateral surface of the rod, qi(z, ¥) and ga(z, f) are the
distributed loads acting on the right and left ends
Using dependencies (1) and (3) taking into account (5) and (6) from (7) - (9) we obtain
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We write the equation of m0t10n of the rod in the form
oW, oW,
EF—*— pF—1+ p(z,)=0
oz ot
Substituting the expression p(z, f) from (13) into the last equation, we obtain
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Following the work [6], in the zones L<z<oo 0<r<a and -00<z<0, 0<r<a we assume
Wo =W (0)=W,(0,0), Wey =Wy, () =W,(L.1) (19)

where Woo(f) and Woi(f) are the displacements of the ends of the rod
Then from (12) and (14) we determine the loads gi(z, f) and g2(z, ¢)
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Along the contours of the ends z=0, z=L of the rod, fictitious forces Q1 and O act with intensities
S1 6W22(O>t) Sy aVVBZ(LJ)
Ql = Qz =
m Oz a Oz

Based on the known expressions for the loads gi(z, £), ¢2(z, ), Q1 and O», it is possible to formulate boundary
conditions at the ends of the rod.
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Boundary conditions (20) and (21) contain derivatives of functions W»; and W3, that satisfy equations (14) and
(16), thus, to determine the solution of equation (18), one must first determine the solutions of equations (14) and (16)
that satisfy the conditions

W,, =W, (¢) for z=L
Wy, =W, (t) for z=0
W, — 0 for z—o0
W, — 0 for z——o

Let us consider a rigid contact of the ends of the rod with the layer. In this case, the displacement of the ends
relative to the soil will be zero, i.e., it should be assumed that Wy=Wy=0. Then the functions q(z, ) and ga(z, ) are
determined by the formulas
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In this case, equations (14), (16) and (18) will not be related through boundary conditions (20) and (21) and will
be integrated under the conditions
W, =0 forz=0, z=L
W,, =0 forz=L, W, =0 forz=0
W, — 0 for z—o0, W, — 0 for z——o0
Conditions (20) and (21) are written as
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Assuming m1/2s:1=0, equations (14) and (16) are written as
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with boundary conditions
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We will obtain the solution to equation (18) using the Fourier method [9], according to which we will represent it
in the form of an expansion

W, =§1T,,(t)sin%

T, satisfies the equations (derivative with respect to the variable (7))
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given value of the dimension of length.

The solutions of the last equations for 7, with zero initial conditions can be represented as
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The calculations were carried out by selectmg the function ¢(r) satisfying the conditions ¢(a)=1 and ¢(R)=0 in the

form
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where Jy(z) and Ko(z) are Bessel functions of the second kind of zero order.

The change in the displacement of soil particles behind the wave front is taken according to the law

v, =Tsinw,T exp(— aor)

where the dimensionless quantities wo and ao are expressed through the frequency woo, the length of the rod L and the
coefficient of friction according to the formulas
Wy =0wyLl/c, a,=ay,Ll/c

RESULTS

The calculations were performed for different values of Young's modulus Ey of the medium, with the initial data
E=4-10*MPa, p=5000kg/m?, pe=1700kg/m3, R=1m, v=0.3, a=0.2m, L=10m, 40=0.0005m, wo=5(1/s), apo=1(1/s).

The results of calculations of the dependence of the displacement W1(0.5L, t) (m) of the average cross-section of
the rod relative to the moving soil on time #(sec) for different values of Young's modulus Ey are presented in Fig. 2 (a.
b), where Fig. 2a shows the changes in the displacement of the cross-section for moments in time when the wave front
flows around the full length of the rod. In this case, the fronts of the wave propagating in the rod and soil reach the
end section in 0.017 sec and 0.35 sec, respectively. It is evident that the maximum displacement values in the cross-
section of the rod decrease with increasing Young's modulus and reach their maximum after the rod is completely
flown around by a wave propagating in the soil.

Fig. 3 shows the curves of the dependence of the longitudinal stress ¢ (MPa) in the initial section of the rod on
time 7 (sec). From the analysis of the curves it follows that the maximum values of stress over time in the section are
achieved after the complete passage of the wave along the length of the rod. In this case, during the interaction of the
rod with the environment (soil), the change in stress in the rod over time is oscillatory in nature and for the selected
time intervals, the amplitude of oscillations decreases with an increase in the Young's modulus of the environment.
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FIGURE 2. Curves of the dependence of the displacement relative to the ground of the average cross-section of the rod
W1(0.5L, £) on time #(sec) for different values of the Young's modulus of the soil medium Eo (MPa):
1) Eo=35, 2) Eo=45, 3) E0=50, 4) E0=70
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FIGURE 3. Curves of the dependence of the stress relative to the ground of the average cross-section of the rod W1(0.5L, ) on
time #(sec) for different values of the Young's modulus of the soil medium Eo (MPa):
1) Eo=35, 2) Eo=45, 3) E¢=50, 4) E0c=70

RLLLIY

RLLUY

015

CONCLUSION

The process of flow around a cylindrical rod embedded in a layer of elastic medium is considered. To solve the
problem, the variational method of V.Z. Vlasov and the Fourier method were used. In this case, wave equations of
motion were obtained for the horizontal displacement of the rod and the soil environment surrounding it. It was
established that the fronts of the wave propagating in the rod and soil reach the end section in 0.35 sec and 0.0176 sec,
respectively. From the analysis of the longitudinal stress curves in the initial cross-section of the rod over time, it was
found that the maximum stress values over time in the cross-section are achieved after the complete passage of the
wave along the length of the rod.
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