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Abstract. A regional model of the Western Tien Shan and the Afghan-Tajik Basin was developed, reproducing stress and 

velocity distributions and demonstrating good agreement with GPS data and earthquake focal mechanism solutions. The 

model's numerical results were combined with seismological, tectonic, and morphological characteristics to conduct 

machine learning using a hybrid Kolmogorov-Arnold network coupled with an LSTM platform. The training results 

successfully confirmed that combining geodynamic modeling with artificial intelligence provides a powerful approach to 

practical prediction of future earthquake locations and magnitudes in regions with high seismic risk. 

INTRODUCTION  

Earthquake prediction remains one of the most complex and pressing problems in science. Uzbekistan has 

experienced numerous devastating earthquakes, highlighting the need for reliable seismic hazard assessment. 

Numerical stress field modeling has become an effective tool for establishing the relationship between geodynamic 

processes and seismic hazard. However, a gap remains between physical models and forecasting systems capable of 

predicting the location and magnitude of future earthquakes. This study bridges this gap by integrating numerical 

modeling of the Earth's crustal stress-strain state with artificial intelligence methods. We integrate the results of the 

numerical model into a hybrid deep learning architecture (a Kolmogorov-Arnold network combined with LSTM), 

which allows us to explore spatial-magnitude patterns of seismic activity and assess the potential for earthquake 

prediction. 

MATERIALS, METHODS, AND OBJECTS OF STUDY 

The results of numerical experiments conducted in [1] can serve as a physical basis for modeling modern 

movements of the Western Tien Shan and the Afghan-Tajik depression (Fig.1) using the Stokes equations. 

The averaged Stokes equations of horizontal displacement ¯v(x1,x2) and pressure ¯p(x1,x2) applied to some 

depths of the earth's crust have the following form[2]: 

 Fvpgrad =+−   (1) 

 0=divv  (2)  

where F (F1, F2) is a vector with components 
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FIGURE 1. The territory of the studied area 

In these formulas, σij with a bar is the initial stress reconstructed in [1], H(x1, x2)  is the topography of the Earth's 

surface, h=const  is depth of lithosphere, ρ is the density and µ is the viscosity coefficient, Δ is the two-dimensional 

Laplace operator. kz is the coefficient which appears in averaging[3]. The functions as w(x1, x2, x3) were averaged  by 

the following formula: 

 ( ) ( ) .,,
1

, 232121 dxxxxw
Hh

xxw
h

H−
=  (5) 

The vertical velocity of displacements on the Earth's surface is obtained by averaging of the incompressibility 

equation (2), assuming v3(x1, x2, h) = 0: 
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The equations (1-4) were solved by boundary element method. 

RESULTS AND ANALISING 

The obtained velocity fields [4] were identified by all existing GPS data for studied area[5-18] (fig.2). Based on 

the velocity of movements and pressures, tangential stresses (Fig. 3) and map of directions of the main stress vector 

(Fig. 4) were constructed, which were also verified with the available instrumental data. 



 

FIGURE 2. Recent horizontal velocity pattern of the Tien Shan and Afgan-Tadjik depression and comparison with instrumental 

data calculated relative to stable parts of the Eurasian plate: 1) –[5-13]; 2)-[14-15] ; 3)-[16] ; 4)-[17] ; 5)-[18] 

 

FIGURE 3. Tangential stresses (kbars) at depths of 15 km of the earth's crust of the Western Tien Shan and the Afghan-Tajik 

depression 

 

FIGURE 4. Comparison of the direction of the maximal vector of horizontal stresses σ₁ (gray opposite arrows) according to the 

numerical model of the stress-strain state with the directions given in the works of various authors: 1 – [5]; 2 – [14-15]; 3 – [19]; 

4 – [17]; 5- [20-21] 

The results of the geodynamic model were combined with seismological and morphological data to form the input 

featheres for machine learning. The combined classification Kolmogorov-Arnold Network (KAN) with regression 



LSTM model (TKAN)[] trained on these data. The TKAN model was tested on the independent events of Western 

Tien Shan for 2023 year (fig.5-6).  The model forecasts highlighted zones of elevated seismic hazard, which coincided 

with the locations of strong earthquakes with magnitude M<5.2 that occurred in 2023. In the area under consideration, 

all earthquakes except only one had magnitudes less than M=5.2. The predicted magnitudes were also consistent with 

the observed values, confirming the practical potential of combining numerical stress modeling with artificial 

intelligence. 

 

FIGURE 5. Locations of predicted by the combined classification and regression model TKAN for 2023. Accuracy of 

geographic coordinates predicted events (with magnitude 3.9<M<5.2) is ΔL=±0.1 

 

FIGURE 6. Magnitudes discrepancy between actual and predicted earthquakes. A y=x match is considered ideal. Accuracy of 

predicted magnitudes (3.9<M<5.2) is ΔM=±0.4 

The earthquake forecast for the future, taking into account events up to December 31, 2024, is shown in Figure 7. 



 

FIGURE 7. The earthquake forecast for the future 

ANALYSIS OF RESULTS 

This study demonstrates that integrating stress modeling with machine learning methods enables the effective 

simulation and prediction of seismic events. The agreement between the simulated and instrumental data indicates 

that the geodynamic structure is well reproduced by the numerical model. This allows us to confidently state that the 

obtained stress fields are suitable for assessing long-term tectonic loads and can be used as input for predictive 

algorithms. The ability of the TKAN model to identify high-hazard zones before strong earthquakes occurs 

underscores the practical validity of this approach. Combining physically based stress modeling with data-driven 

learning bridges the gap between geodynamic processes and probabilistic earthquake forecasting. Our model does not 

predict precise timing, but it helps narrow the area where the probability of future earthquakes is highest. 

CONCLUSION 

This study presents a novel framework that combines numerical stress–strain modeling with machine learning to 

predict seismicity in Western Tien Shan. 

The model highlighted high-risk zones in the Western Tien Shan prior to the strong earthquakes, demonstrating 

both scientific validity and practical value. 
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