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Abstract. The article formulates the problem of deforming a thin-walled shell type main pipeline beyond the limits of elasticity 

under repeated dynamic loading based on the theory of small elastoplastic deformations. The equations of motion of a cylindrical 

shell – main pipeline are obtained using the Hamilton–Ostrogradsky principle. When solving the obtained boundary value problem, 

the method of finite differences of the second order of accuracy is used. Based on the application of central difference formulas, a 

system of algebraic equations is obtained. Based on the developed method for calculating the shell pipeline, the calculation results 

for repeated static loading, taking into account internal pressure, are presented. 

INTRODUCTION  

As is well known, the seismodynamic theory of complex systems of underground structures created in [1,2] is 

based on extensive factual research on the effects of earthquakes and extensive experimental work carried out in 

laboratory and field conditions. The theory is based on the possibility of moving the soil surrounding the underground 

structure. The nature of the interaction of structures with the surrounding soil, which has elastic, elastoplastic and 

viscoelastic properties, has been established. The study of damage and cracks in pipelines during repeated static and 

dynamic loading serves to improve the theory of calculations and ensure the seismic resistance of the elements of 

structures. 

In [3], vibrations of underground shell-type structures from seismic impacts were investigated, and the problems 

of earthquake resistance of underground shell structures of open and closed profiles, constant and variable thicknesses 

were solved. In [4], the condition of pipelines after earthquakes of varying intensity is described, reserves of strength 

and reliability of pipelines are identified, and engineering methods for calculating their seismic effects are proposed. 

An earthquake impact survey indicates a significant influence of the type of pipes and their connections on the degree 

of damage to pipelines during earthquakes. 

The monograph [5] is devoted to the experimental and theoretical study of the interaction of structures with the 

ground. Based on the experimental results, local laws of interaction of extended underground structures with soils of 

disturbed and undisturbed structures are constructed. Numerical solutions of the problem of propagation of plane 

shock and continuous waves in ground media and in "structure – ground" systems are given, taking into account the 

elastic, viscous, plastic properties of both soil and underground structures, as well as various laws of interaction on 

the surface of their contact. In [6], according to the developed computational model of a thin-walled large-diameter 

pipeline in the form of a cylindrical shell for straight pipelines and a toroidal one for curved ones. The problems of 

determining the frequencies of free bending vibrations, static and dynamic stability of above-ground pressure pipelines 

with flowing liquid are solved. It is noted in [7] that the mathematical model of deformation of a part of the pipeline 

on a viscoelastic base developed by him made it possible to estimate the stress level and bearing capacity of the 

pipeline over time. Accounting for soil creep allowed us to analyze changes in the stress-strain state of the pipeline 



section. A computational model of unsteady elastoplastic deformation of a spatial pipeline with liquid flowing in it 

and interacting with the ground was developed in [8]. 

The monograph [9] describes the methods of numerical modeling of main pipeline systems. The proposed concepts 

and methods are the basic elements of the theoretical foundation of modern computer tools for the effective solution 

of a wide range of technical and technological problems of designing structures and facilities of pipeline transport. 

The article [10] presents experimental and numerical results of the analysis of the interaction of soil and pipe. It is 

noted that the interaction of soil and its structure can be used to improve the planning and design of underground 

pipelines and reduce the risk of damage to the material. 

It is noted in [11] that significant progress has been made in recent years in identifying and quantifying seismic 

hazards and determining the pipeline's response under conditions of large deformations. The application of analytical 

methods to the assessment of the pipeline's response to constant displacement is shown. The article [12] provides an 

overview and analysis of pipeline integrity, and also shows that earthquake-induced soil deformation can significantly 

affect the stress-strain state of underground pipelines. 

STATEMENT OF THE TASK  

Let us formulate the problem when the main pipeline – thin-walled shell is deformed beyond the limits of elasticity 

under repeated dynamic loading. In this case, the stress-strain state of the pipeline is determined based on the theory 

of small elastoplastic deformations [13]. 

Following the work [14], we introduce the differences: 
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To determine the components of displacements )(n
iU  and deformations 

)(n
ije  under nth loading, we have the 

following relations [15]: 
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Under alternating loading, the stress and strain components are related as follows [16]: 
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DERIVATION OF THE EQUATION OF MOTION  

Under variable loading, we use the Hamilton–Ostrogradsky principle [15] to obtain the equation of motion of the 

cylindrical shell of the main pipeline: 

 .0)( )()()(

 =+−

t

nnn dtАПT   (5) 

Here, the kinetic energy variation δT(n) is determined by the formula: 
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Variations of the work of external forces are also provided in the form of: 
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The variations of potential energy in this formulation are determined by the formula: 
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Taking into account the relations (3) – (4), the internal effort moments are determined. Substituting them in (8) 

and performing integration operations in parts, after some transformations for the variation of potential energy under 

repeated dynamic loading, we obtain the following expressions: 
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Relations (9) can be generalized using expressions of internal efforts and moments, according to [16,17]: 
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Now we substitute the kinetic (6) and potential energies (9), as well as the work of external forces (7) in (5). As a 

result, we obtain systems of equations of pipeline motion with appropriate boundary and initial conditions: 
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Boundary conditions for the parameter α: 
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The nodal effect according to the parameters α and β: 
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Initial conditions for the t parameter: 
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Boundary and initial effects on parameters t, α and β: 
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CALCULATION METHOD 

Let's consider the solutions of the boundary value problem and the calculation algorithm for the elastic case (first 

approximation). The movement of the pipeline, according to the Bubnov−Galerkin method, is represented as 
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For this case, we will rewrite the system of differential equations of the main pipeline – cylindrical shell in the 

following form: 
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Boundary conditions of the shell pipeline according to the parameter α: 
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Initial conditions: 
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The system of differential equations (16) is represented in vector form by introducing the following vectors: 

.)(,)( T
nYnXnZnFT

nVnUnWnU == . (20) 

Taking into account (20), the system of differential equations (16) is written as follows: 
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where the matrices are of the third order 
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The matrix elements are shown in relations (17). 



When solving boundary value problems (16), (18) and (19), the method of finite differences of the second order 

of accuracy is used. Based on the application of central difference formulas, the following system of algebraic 

equations is obtained: 

 
0,

21
1,

1
,

1
1,2,1,,1,

1
1,

1
1,

1
,

1
1,

=+++

+++++++++

−
+

−

−
−++−

+
+

+
+

++
−

k
in

k
inn

k
inn

k
inn

k
inn

k
inn

k
inn

k
inn

k
inn

k
inn

k
inn

k
inn

FUBUC

UBUAUDUCUBUAUBUCUB


 (23) 

The initial condition (19), after approximation, will take the following form: 
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The difference boundary value problem is solved using the run-through method [16]. It is assumed that the 

displacements and their velocities are set at the initial moment of time, and also, the pipeline is pinched at α=0 and 

α=1. In vector form, the boundary conditions are expressed as follows: 
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taking into account the boundary conditions (18), the system of equations (23) is written as 
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From equation (26), we can deduce the solution for the i–th equation [18-20]: 
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CALCULATION RESULTS 

As an illustration, based on the developed method for calculating the shell pipeline, Table 1 shows the calculation 

results for repeated static loading, taking into account internal pressure. Geometric and mechanical characteristics of 

the cylinder: h=0.01sm; µ=0.3; R=150 sm; L=1120 sm; β=2π; q=1; 5102 =E MРa. The dimensionless results obtained 

are presented in the form of graphs and tables. 

Table 1. The nature of the change in the calculated values along the length of the shell 

  310W  
310U  1M  2M  1N  2N  

0 0,0 0,0 -9,71608 -4,17511 -2,16607 -0,99421 

0.1 -0,05403 -0,87381 -3,56012 -1,80509 -1,07511 -2,58409 

0.2 -0,16721 0,06788 0,07746 -0,30733 -0,35142 -6,17013 

0.3 -0,26960 2, 62508 2,15907 0,63612 -0,63503 -10,11210 

0.4 -0,34052 5,70209 3,28106 1,24514 -1,78410 -13,10121 

0.5 -0,36473 8,34110 3,53810 1,58013 -3,17805 -14,11012 

 



     

  

FIGURE 1. The nature of the convergence of the calculated values for different values of the grid pitch h 

CONCLUSION 

The results of the study of the stressed deformed state of the shell under loading show that plastic deformations 

occurring in the pipeline are localized in relatively narrow zones. Therefore, the destruction of the shell during loading 

is mainly determined by the accumulation of damage. 
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