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Abstract. The paper examines non-stationary wave problems related to the longitudinal interaction between underground 

trunk pipelines and the surrounding soil under seismic loads. Specifically, it focuses on the propagation of a longitudinal 

wave along the pipeline. The problem is simplified into two coupled one-dimensional problems. The pipeline is modeled 

as a viscoelastic hollow semi-infinite rod. To describe the deformation of the rod, the authors utilize the Eyring model (the 

standard-linear body model). In certain cases, this model can be easily transformed into the elastic Hooke model. Similarly, 

the soil surrounding the pipeline is modeled as a semi-infinite hollow rod, where the internal diameter is equivalent to the 

external diameter of the pipeline. The depth at which the pipeline is buried in soil and its external radius determine the 

external diameter of the surrounding hollow “soil rod”. The equations governing the soil's behavior are also based on the 

viscoelastic Eyring model. Consequently, the calculation model represents a coaxial system-a “pipe within a pipe”. The 

seismic wave propagates exclusively through the soil, starting from a designated initial section. The wave formation along 

the pipeline is a result of the interaction force (friction) at the contact surface between the pipeline and soil. This frictional 

force acts on the pipeline’s outer surface. The wave problems are addressed separately for the pipeline and soil, but they 

are interconnected through the conditions at their contact interface. These conditions follow nonlinear laws governing the 

friction force and can be divided into two stages. In the first stage, the friction force increases in proportion to the relative 

displacement. In the second stage, the friction behavior is described by the Amontons-Coulomb law. To obtain a numerical 

solution, we use the method of characteristics, followed by the finite difference method. An analysis of the numerical 

results shows that, under the influence of the active interaction force (friction), soliton-like waves are generated in the 

pipeline and propagate along the pipeline without attenuation. 

INTRODUCTION 

The construction of underground pipelines is globally on the rise, making them critical components of energy and 

construction projects [1, 2]. One of the primary challenges in this field is ensuring the strength and safe operation of 

these pipelines, particularly in the event of seismic activity. As noted in reference [1], even minor seismic forces can 

result in significant damage and accelerate failures in certain pipeline sections, especially when the pipeline runs 

parallel to the direction of the seismic load. The transportation of natural gas, oil, and petroleum products through 

pipelines underscores the importance of their seismic resistance and stability. 

When discussing the seismic resilience of underground structures [3-5], the focus is often on the movement and 

vibrations of the pipelines themselves. However, it is essential to recognize that the stress-strain conditions of the soil 

surrounding the pipeline play a significant and, sometimes, decisive role in determining the overall stress state of the 

pipeline [6]. Key factors influencing the stress-strain state of the pipeline include soil deformation around it and the 

structural failure of soil during its interaction with the pipeline [7-10]. From a mechanical behavior perspective, 

structural failure of soil occurs when there is a change in the mechanical characteristics of soil [9, 10]. 

The reliability and strength of underground pipeline systems largely depend on the interaction forces resulting 

from the relative movement between the pipelines and the surrounding soil, as noted in reference [3]. One key aspect 

to consider is the stress state and dynamic behavior of the soil around the underground pipelines, as highlighted in 

reference [6]. Current theories on the seismic resistance of underground structures, such as those cited in references 

[3 to 5], do not adequately account for this factor. Additionally, many existing theories primarily focus on stationary 
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oscillations of pipelines without considering the influence of the soil medium, as discussed in references [3, 4]. Taking 

the surrounding soil medium into account when addressing non-stationary problems necessitates solving boundary 

wave issues. 

Non-stationary boundary value problems related to the propagation of seismic waves in soils are discussed in [8]. 

When a pipeline is embedded in a soil medium, seismic loads and the deformation properties of soil and the pipeline 

create interaction forces at their contact surfaces. The longitudinal interaction laws between an underground pipeline 

and the surrounding soil are examined in [9]. These laws exhibit significant nonlinearity, particularly due to the 

destruction of the soil contact layer during strong interactions, as highlighted in [10]. In [6], the application of this 

interaction law to the seismic resistance of underground pipelines is demonstrated. However, solutions to wave 

problems in this context can only be derived using numerical methods. 

Numerous studies focus on wave processes in soils and the numerical methods for solving wave problems related 

to soils and underground pipelines; for example, see [11-15]. In [11], an analytical solution is presented for the seismic 

response of a transverse wave falling on a layered elastic foundation under dynamic impact, based on the theory of 

wave propagation. Additionally, reference [12] proposes an integrated method for inverting dispersion curves of 

directed longitudinal waves and surface waves, which allows for the simultaneous estimation of longitudinal and shear 

wave velocities. 

In [13], a theoretical investigation is conducted on the propagation of longitudinal acoustic waves in structurally 

inhomogeneous viscoelastic solids that exhibit some nonlinearity, which decreases with increasing frequency. The 

study provides exact solutions for standing waves that propagate without any change in their shape. 

The examination of wave processes in soils is particularly relevant when considering wave interactions with 

structures within a soil environment. Among the most common and significant underground structures are trunk 

pipelines. In [14], the influence of dynamic behavior and lateral soil pressure on the dynamics of box culvert pipes 

buried in dry, loose soils is numerically investigated. 

The review article [15] discusses the perfectly matched layer (PML) method and its various formulations 

developed over the past 25 years for numerical modeling and simulation of wave propagation in unbounded media. 

Additionally, a brief analysis of publications in [16], addressing the seismic interaction of soils and structures, 

indicates that wave processes in soils and underground pipelines are being studied intensively worldwide. 

The findings in references [17 to 19] indicate that creating mathematical models for wave propagation in soils and 

their interaction with underground structures, along with solving numerical wave problems, is a significant and quite 

labor-intensive task. 

MATERIALS, METHODS, AND OBJECTS OF STUDY  

The general statement of the problem of wave propagation in soil containing an underground pipeline laid at a 

certain depth, as illustrated in Fig. 1, is inherently three-dimensional. However, mathematical modeling and finding a 

numerical solution for this problem can pose significant mathematical and physical challenges. To simplify the 

analysis, we will adopt a more straightforward model and calculation scheme. For our calculations, we will use a 

coaxial composite rod system consisting of two layers along the radius. 

In this model, the outer hollow rod represents the soil medium, while the inner rod represents the pipeline. Since 

we are focusing on the trunk pipeline, we will assume it to be sufficiently long, starting from the initial section x=0. 

This initial section (x=0, where x is the axis of the pipeline) will be considered a fixed point where the seismic wave 

is set in soil. 

This calculation scheme greatly simplifies the three-dimensional problem by reducing it to two one-dimensional 

problems. This method of simplification has been effectively utilized in references [3, 5, 6]. While this approach 

simplifies the problem significantly, it still captures the main characteristics and essence of the wave processes in soil 

and the pipeline.  

The mathematical model of soil and pipeline deformation is taken to be linear-viscoelastic  

(a standard linear body): 
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Here and below, i=1.2. For i=1, the parameter values refer to the pipeline, and for i=2, to the soil. 
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In Eq. (1), – is the longitudinal stress, – is the longitudinal strain, t – is time, ES– is the static modulus of 

elasticity, ED – is the dynamic modulus of elasticity, µ– is the bulk viscosity parameter, η– is the bulk viscosity 

coefficient. 

In [9], based on serial laboratory and field static and dynamic experiments on the interaction of an underground 

pipeline with soil, mathematical models of interaction for changing the interaction force (friction) τ were developed. 

The most adequate of them is the model developed based on a standard linear body in the following form: in a 

homogeneous, isotropic, linearly elastic body are defined as: 

for 
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for 
*
NN   , *uu  : 

 Nfc  +=  (3) 

for, 
*
NN   : 

 0=  (4) 

where τ– is the interaction (friction) force, и– is the relative displacement, u=ug–uc, ug– is the absolute soil 

displacement, uc– is the absolute pipeline displacement; u*– is the critical value of the relative displacement, upon 

reaching which the soil contact layer is completely destroyed; KxD – is the variable dynamic soil stiffness coefficient 

(as 𝑢̇ → ∞); KxS – is the variable static soil stiffness coefficient (as 𝑢̇ → 0); µS – is the variable parameter of soil shear 

viscosity; 𝑢̇=du/dt– is the rate of relative displacement of the pipeline and soil; IS=u/u* – is the parameter 

characterizing the structural destruction of the soil contact layer, 0≤ IS ≤1, for IS =0 is the soil contact layer when 

contact bonds between the outer surface of the pipeline and the soil are intact, and for IS =1, this bond is completely 

destroyed; fv– is the coefficient of internal friction of the soil; N– is the stress normal to the outer surface of the 

pipeline; 𝑁
∗ – is the ultimate tensile strength of the soil (from here on, compressive stresses are taken to be positive). 

Specific nonlinear functions of equations (2) and physical values of the parameters included in equations (2) – (4) are 

given in [6, 9]. 

The equations for the longitudinal motion of the pipeline and soil along the x–axis, coinciding with the pipeline 

axis, are of the following form: 
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where vi– is the particle velocity (mass velocity); i, i – are longitudinal stresses and strains; 0i– is the initial density; 

χi=sign(v)– for the rod, and χi=–sign(v)– for soil; v = v2 – is the soil particle velocity; τ – is the reduced friction force 

acting per unit length of the rod. 

The values of τ for the pipeline and soil are determined from the following relationship: 

 )/(4 22
BiHiHii DDD −=   (6) 

where τ – is the friction force (shear stress), determined from equations (2)–(4); DHi – are the outer diameters, and  

DBi – are the inner diameters of the pipeline and soil. 

The solution to the problem is reduced to integrating the nonlinear system (5), closed by equations (1), separately 

for the pipeline (i = 1, an internal problem) and separately for the soil (i = 2, an external problem). This system is 

coupled by nonlinear conditions on the contact surface between the pipeline and the soil, which determine the laws of 

variation of the interaction force (friction) τ according to equations (2)–(4). 

Boundary conditions are at x = 0, the load is specified as a sinusoidal wave at the initial cross–section of soil  

(Fig. 1): 
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where T– is the half–period of the load, θ – is the duration of the load, max – is the amplitude of the load, and  

 – is the longitudinal stress acting along the x–axis. 

The wave front conditions in soil and the pipeline are zero, and the initial conditions of the problems are also zero. 

The systems of equations (1) and (5) are hyperbolic. They exhibit real characteristics and characteristic relations 

along the characteristic lines on the characteristic plane t, x. Further solutions can be derived using these characteristic 

relations, which are ordinary differential equations. The main equations (5), which are closed by equation (1), are 

classified as partial differential equations. The characteristic relations are described by ordinary differential equations. 
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Typically, numerical solutions to ordinary differential equations offer a higher order of accuracy compared to 

numerical solutions for partial differential equations [17]. 

As previously mentioned, the underground pipeline is involved in the movement of the soil medium, along which 

the seismic wave propagates. According to reference [17], the frequency of longitudinal seismic waves can vary 

between 0.01 and 100 s-1. Reference [8] indicates that high-frequency seismic waves in soils attenuate significantly 

and do not carry substantial energy. Conversely, low-frequency seismic waves, which contain the primary energy of 

an earthquake, are considered the most dangerous. 

Based on these assumptions, we have chosen initial data for calculations using the developed computer program. 

Research conducted in [17] indicates that during strong earthquakes, the amplitude of longitudinal waves can reach 

max= 0.3-0.7 MPa. 

To conduct numerical calculations, we selected characteristics for loess-like soils, commonly found in seismically 

hazardous regions of the Earth.  

Consequently, we will use the following parameter values as the initial inputs for our numerical calculations. 

Soil characteristics are: 0g= 20 kN/m3 – specific gravity of soil; DNg= 3 m – nominal external diameter of the soil 

cylinder; DBg = 0.15 m – nominal internal diameter of the soil cylinder; K= 0.3 – soil lateral pressure coefficient; 

g=2=EDg / ESg=2– dimensionless quantity; C0g= 1000 m/s – longitudinal wave propagation velocity in soil; CgS = 

500 m/s – transverse wave propagation velocity in soil. 

Characteristics of steel pipelines are: 0c = 78 kN/m3 – specific gravity of the pipeline material; DNc = 0.15 m – 

outer diameter of the pipeline; DBc = 0.14 m – inner diameter of the pipeline; c=1=EDc / ESc=1.02– dimensionless 

quantity; C0c =5000 m/s – velocity of longitudinal waves in pipeline; H1=1.425 m – depth of pipeline in soil; µc=10000 

s–1 – viscosity parameter of steel; Lc =107 m – nominal length of pipeline. 

Characteristics of soil contact layer and soil-pipeline interaction: fv=0.3 – coefficient of internal friction of soil; Cv 

=10 kN/m2 – coefficient of soil cohesion; u*=10–3 m – value of relative displacement at which the interaction process 

passes to the stage of Coulomb friction; α=1.5 – dimensionless coefficient in formula; χ=0.1 – dimensionless exponent 

in formula; vN=KxDN / KxSN=2– dimensionless quantity; v*=𝐾𝑥𝐷
∗ /𝐾𝑥𝑆

∗  =4– dimensionless quantity. 

Load characteristics are: max=0.7 MPa – longitudinal wave amplitude; T= 10 s – half–period of low–frequency 

longitudinal wave; θ= 100 s – conventional time of action of longitudinal wave; f= 1/2T =0.05 s–1 – frequency of 

longitudinal wave in soil. 

With the initial data given above, the frequency of longitudinal seismic waves is f = 1/2 =0.05 s-1. This is a fairly 

low-frequency wave. However, implementation on a computer and obtaining a numerical solution encounter the most 

difficulties and peculiarities with low-frequency seismic waves. 

However, obtaining a numerical solution and implementing it on a computer presents significant challenges, 

particularly with low-frequency seismic waves. 

The above initial data are basic. In cases of their change in the future, it should be noted separately. 

ANALYSIS OF RESULTS 

Obtaining numerical solutions of nonlinear wave problems for soil media, as shown in [6, 9, 17], is a complex 

process, even in the case when these problems are one-dimensional in space. In cases where coupled one-dimensional 

issues are considered (i.e., an underground pipeline in soil), these difficulties increase significantly. 

Changes in longitudinal stresses in pipeline sections x= 0; 5; 10; 15; 20; 25 and 30 m are shown in Fig. 1, curves 

1-7, respectively. 

Longitudinal stresses in the pipeline reach a maximum of cmax = 148.2 MPa. This value exceeds the amplitude of 

the longitudinal stress in soil, which is gmax = 0.35 MPa by a factor of 423.4. Such a significant increase is due to the 

active friction force that arises from soil deformation in the longitudinal direction (along the pipeline axis), which acts 

on the underground pipeline. This maximum stress along the pipeline is achieved gradually. In the initial section of 

the pipeline, no load is applied, resulting in zero stress values (indicated by straight line 1). In the subsequent sections 

of the pipeline, x =5 m and 10 m (curves 2 and 3), the stress amplitude gradually increases. At x =15 m, it nearly 

reaches a maximum of 148.2 MPa (curve 4). Beyond that point, in sections of the pipeline x =20 m, 25 m and 30 m, 

the stress amplitude remains constant at cmax = 148.2 MPa. Consequently, a powerful wave with this amplitude 

propagates along the pipeline. Calculations indicate that the propagation velocity of this wave is significantly lower 

than the speed of sound in the pipeline. This observation suggests the presence of a new soliton-like interaction wave, 

which travels at a different velocity compared to a conventional longitudinal wave in a pipeline that is not surrounded 

by soil medium. The investigation of this wave's properties falls outside the scope of this work and will be the focus 

of future research. 
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FIGURE 1. Changes in longitudinal stresses over time in the pipeline sections x = 5; 10; 15; 20; 25 and 30 m (curves 1-7). 

Figure 2 illustrates the changes over time in longitudinal deformation of soil (represented by curves 10-70) and the 

pipeline (curves 1-7) at x = 0; 5; 10; 15; 20; 25 and 30 m, respectively. 

As shown in Fig. 2, longitudinal deformations (like stresses) in all sections of soil are the same (curves 10-70). In 

the pipeline, they gradually increase and approach their asymptotic values, and then remain unchanged. The maximum 

amplitude of longitudinal deformation in the pipeline is more than double that of the deformation in soil. 

The quasi-static theory of seismic resistance for underground pipelines is based on the assumption that the 

deformations of soil and the pipeline are equal during seismic events. However, as illustrated in Fig. 2, this assumption 

is not accurate. Despite this discrepancy, the quasi-static theory continues to serve as the foundation for standard 

regulatory methods. 

 

FIGURE 2. Changes in soil deformation (curves 10-70) and the pipeline (curves 1-7) over time in sections  

x= 0; 5; 10; 15; 20; 25 and 30 m 
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FIGURE 3. Changes in the velocity of soil particles (curves 10–70) and the pipeline (curves 1–7) over time in sections  

x= 0; 5; 10; 15; 20; 25 and 30 m 

Figure 3 shows the changes in the velocity of soil particles (curves 10–70) and pipeline sections (curves 1–7) over 

time for x= 0; 5; 10; 15; 20; 25 and 30 m. As seen from Figure 3, the velocities of soil particles and pipeline sections 

almost completely coincide. According to the changes in the relative velocity of soil and pipeline vt (Figure 4) for  

x = 0, the maximum value of the relative velocity is 0.2110-2 m/s (curve 1) or 0.0021 m/s. For x= 5 m - vtmax = 0.0004 

m/s (curve 2), and for x = 10 m - vtmax = 0.0002 m/s. In the remaining sections x = 15; 20; 25 and 30 m (curves 4–7), 

the relative velocity values are practically zero. 

 

FIGURE 4. Changes in relative velocity over time in pipeline sections x= 0; 5; 10; 15; 20; 25 and 30 m (curves 1–7) 
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These results confirm that the velocities of soil and the pipeline ultimately become the same. According to the 

obtained exact analytical solutions for elastic interacting rods enclosed one inside the other, the values of the relative 

velocity are zero [18]. 

 

FIGURE 5. Changes in friction force (curve 1) and relative displacement (curve 2) over time for x= 5 m 

Figure 5 shows the changes in the interaction force (friction) over time – τ(t) (curve 1) and the relative displacement 

over time - u(t) (curve 2) for pipeline section x= 5 m. Similar dependencies τ(t) (curve 1) and u(t) (curve 2) for  

x= 30 m are shown in Fig. 6. Here, the values of the shear stress (friction force) and relative displacement are quite 

insignificant. 

 

FIGURE 6. Changes in friction force (curve 1) and relative displacement (curve 2) over time for x= 30 m. 
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FIGURE 7. Diagrams τ(u) for x= 0, 5, and 10 m (curves 1–3) 

The diagrams of the interaction of the pipeline with surrounding soil, i.e., dependencies τ(u), are shown in  

Fig. 7 (for pipeline sections x = 0, 5, 10 m) and in Fig. 8 (for sections x = 15, 20, 25 and 30 m). From these results, it 

is evident that τmax =0.06 MPa (curve 1 in Fig. 7) and umax =0.0021 m (curve 1 in Fig. 7). Further, along the pipeline, 

these values of maximum interaction forces and relative displacement become even smaller. For x=30 m,  

τmax =0.0002 MPa, and umax =0.000025 m. In other words, the friction (interaction) force is practically absent at  

x=20, 25 and 30 m (curves 2, 3, 4 in Fig. 8). This is explained by practically identical, equal velocities of soil particles 

and pipeline sections, starting from sections x=20 m and further. 

 

FIGURE 8. Diagrams τ(u) for x=15, 20, 25 and 30 m (curves 1–4). 
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CONCLUSIONS 

The three-dimensional problem of underground pipeline interaction with surrounding soil during seismic wave 

impact can be simplified into two coupled one-dimensional non-stationary nonlinear wave problems. The calculation 

methods used are clearly defined and justified. 

Analysis of the numerical solutions revealed that a combined nonlinear elastic-viscous-plastic interaction law and 

the Amontons-Coulomb law govern the interaction between underground pipelines and soil. 

For the first time, it was shown that an active interaction force within an underground pipeline generates a  

soliton-like wave. This wave propagates along the pipeline without attenuation at a speed lower than the speed of 

sound in the pipeline material. 
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