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Abstract. We develop and document a robust finite-difference (FDM) solver for the Saint-Venant torsion of circular,
axially variable-diameter shafts » = R(z) . The formulation is based on the Prandtl stress function, mapped to a rectangular

computational domain via » = pR(z) with p e[0,1]and z €[0, L]. The resulting elliptic PDE has variable coefficients

and a weak mixed derivative; we discretize it with second-order central differences (and, as an alternative, Chebyshev
collocation in p) and solve with Successive Over-Relaxation (SOR) or Krylov methods. Both twist-controlled and torque-
controlled load cases are treated consistently through an axis condition on the stress function. We report implementation
details, convergence checks, and verification against the classical constant-radius solution. The method produces stress

distributions 7,4, 7,4 and the torque profile T (z); it is immediately extensible to temperature-dependent shear modulus

G(T) and eigen-twist sources driven by thermal gradients. This capability is relevant to design and life assessment of

power-train shafts, rotors, turbine spindles, and process-industry rolls where diameter tapers or turned shoulders are
common.

INTRODUCTION

Torsion of nonuniform circular shafts arises in numerous engineered systems: automotive and aerospace drive
shafts with tapered sections, compressor/turbine rotors, line-shafting with bearing seats and fillets, and paper/steel
mill rolls. Saint-Venant’s theory remains the workhorse for elastic torsion where warping is restrained only by free
lateral surfaces. Using the Prandtl stress function reduces the equilibrium equations to a scalar elliptic PDE and
provides direct access to shear stresses and torque. When the radius varies along the axis, R(z), the physical domain

is no longer cylindrical and a practical numerical treatment benefits from a mapping to a rectangle. This paper presents
a compact, production-ready FDM formulation on (p,z) grids, including mixed-derivative treatment, boundary/load

control, and diagnostics for accuracy. For higher spectral accuracy across the radius, we also outline a Chebyshev
collocation variant in p[1].

MATERIALS, METHODS, AND OBJECT OF STUDY

The object of study is an axisymmetric circular rod (tapered shaft) made of an isotropic elastic material. The radius
varies linearly along its length, forming a truncated cone geometry. The analysis assumes axisymmetric torsion with
the only nonzero displacement component being the circumferential one (7).

The material shear modulus G is considered both constant and variable along the longitudinal coordinate to model
thermal or compositional gradients. The effect of temperature is incorporated through a temperature-dependent
modulus (z,)=Go[1—aT(T(z)—To)], allowing comparison between purely mechanical and thermomechanically coupled
torsion cases[2].


mailto:javlonbek.turdibekov9@gmail.com

FIGURE 1. Axisymmetric circular shaft with variable diameter

Displacement assumption. For axisymmetric torsion we take only a circumferential displacement,
Uy =u9(r,z), u.=0, u,=0, (1)
u and all fields are independent of (2( )/66 = 0).
Small-strain components in cylindrical coordinates. The engineering shear strains that involve u,, are:
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Derivation sketch. Starting from the small-strain tensor &; = 2 (ui’ jtu j’i) in cylindrical coordinates, the nonzero

metric coefficients give [3]:
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With axisymmetry (8( )/ 00 = O) and u, =u, =0, the engineering (tensor-double) shears are
Vg =28.9 =0uy/0r —uylr and V.0 = 2,9 =0uy/ 0z
For isotropic linear elasticity the shear stresses are proportional to the shear strains via the shear modulus G:
7.9 =GY,g, 7.0 =G7.p- “4)

(If desired, G may be treated as constant in the baseline model or allowed to vary with temperature G(T ) in
extensions.)
Neglecting body forces, the divergence of the Cauchy stress must vanish. The 8-component of Vo=0 in cylindrical
coordinates is
li(ro—re)_f_lao-i_f_ao-_zgzo. (5)
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Under axisymmetry (0()/06 =0). and since torsion produces no 0, contribution in Saint-Venant theory, we

obtain the scalar equilibrium equation for shear:
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Following Prandtl’s construction for torsion, we represent the only nonzero shear components by a scalar potential

D=P(r,z) as

1 1
T.9 :_2\P,25 T,9 = ——2lP,r. (7)
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From the axisymmetric kinematics (2) and Hooke’s law (4) we have
Ug 1 ‘Pz 1 ‘Ilr
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Compatibility of mixed derivatives, u, . =u, ., together with (8) yields after a short calculation
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If the lateral surface is traction-free, the shear stress component in the -direction projected onto the surface normal
must vanish. Geometrically, this means that as you move along the boundary ¥ does not change; hence ¥ is constant

on the boundary.

Y(R@),z)=0 forall ze[0, L], (10)
which does not affect stresses because only ¥-gradients enter 7,4, 7.4 [4 ].

Axis regularity: » — 0 Finiteness of 7,5 =—(1/r%)- W, on the axis requires
¥,(0,z)=0, (11)

and ¥(z) even in r. This is the standard Saint-Venant regularity for axisymmetric torsion[5].
End faces z=0, L: Saint-Venant “soft” end assumption
In Saint-Venant torsion, warping is assumed free at the ends and end effects are neglected. The corresponding
approximation is an axial “soft” Neumann condition
¥ (r,0)=¥.(r,L)=0 (0<r<R(2), (12)

which states that no axial gradient of @ is enforced at the ends. This is a standard closure when the torsion is controlled
by data applied far from the ends.

Load control: twist-controlled vs moment-controlled. Because stress depends only on ®-gradients, the loading can
be enforced through the axis value @(0,z). Two practically important control modes are:

Twist-controlled torsion (prescribed twist rate 4(z)) If the cross-section at axial station z is circular of radius R(z),
the elastic solution for a prismatic slice yields the polar moment of inertia

J(z)= %R(z)“. (13)
Relating torque, twist, and @ on the axis gives
r)-ae)=2m0%0.2) = ¥lo.2)=2i) (14)
T

This sets the axis gauge consistently with the prescribed twist rate [6].

When the applied torque per station (z)) is known, the same identity gives the axis value directly, this is the V-
convention counterpart of the classic relation T=GJk. Note that in the W-convention the torque depends only on the
axis value: T(2)=27zGV(0,2).

¥(0, z)= 2%;) = T(z)=22G¥(0, z). (15)
NUMERICAL METHOD:

Consider a circular bar whose radius varies smoothly along the axis z€[0,L] according to a prescribed function
R(2)>0. To place the problem on a fixed computational strip, we introduce the stretched radial coordinate

r=pR(z) pelo, 1], (16)
and define the Prandtl stress function on the mapped domain by
CD(p, z) = ‘I’(r, z) = ‘P(pR(z), z) 17
Applying the chain rule yields the relations between derivatives of ¥ and ®:
1 1 R
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where R'=dR/dz, R"=d?R/dz*. Throughout, subscripts p and z denote partial differentiation with respect to those
variables.

Governing equation in the mapped (p,z)-domain: For axisymmetric Saint-Venant torsion of a circular cross-
section, the Prandtl formulation leads (after mapping) to a linear second-order PDE for ®(p,z) on the strip
(p,2)€(0,1)x(0,L):

Alp, z)® ,, +B(p, z)® . + CD_. + D(p, z)® , =0, (19)



with coefficients
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Note that the material shear modulus G and the prescribed twist rate ko do not appear explicitly in the PDE; they
enter through boundary data and the post-processing formulas for torque[7].
The boundary conditions consistent with Saint-Venant’s assumptions and the mapping are: Lateral (free) surface
p=1: a constant-gauge condition for the Prandtl function,
(1, z)=0, 0<z<I, 1)
which is equivalent to the traction-free boundary in this formulation.
Axis regularity/twist control p=0: imposing the sectional twist k via the classical identity

T(z)z 27[G<D(O, Z), T(Z): GJ(Z)K‘O, J(Z): %R(z)“, (22)
yields the Dirichlet axis condition
4
@(0, z)= Ik _RE) Ko, 0<z<L. (23)
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(In discrete form, axis regularity is enforced by mirroring the first off-axis node, e.g. ®; = .)
Ends z=0,L: Saint-Venant “soft ends” (end effects neglected) correspond to homogeneous Neumann data,
@, (p,0)=0, @, (p,L)=0, 0<p<l, (24)

which are implemented by first-order copies in the axial direction on the mesh.
Finite-difference discretization (with cross derivative)

Let p,=iH,with H,=1/(Ng~1) for i=0,...Ng —1, and z; = jH_ with H, = L/(N, -1)
for j=0,.,N,—1. Using second-order central differences, we approximate the derivatives at interior nodes
(i, /) 1<i<Nz—2, 1<j<N,-2, by

@ (p,0)=0, @, (p,L)=0, 0<p<l, (25)
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with the (locally) frozen coefficients
4,;=Ap.z;) B ,=Blp.z) C=L D,;=Dlp.z) 27
the discrete balance at (i,j) can be written in the symmetric point-Jacobi form
(2Ai2’j +2—C2Jd>.j =4, i +2<1>,»_1,,» o e +2(Di’j‘1 o Dui o D (@, ,-®,, ) (28)
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where
Jij = Qi o1 =Pt jot =Py + Py

This linear system is solved efficiently by SOR (successive over-relaxation) with an empirically chosen relaxation
parameter w€(1,2). Neumann end conditions are imposed by copying neighboring interior values in z, the axis
condition is Dirichlet (with a mirrored ghost), and the lateral boundary is Dirichlet ®=0.

Nondimensionalization. To present results in a scale-free form and to stabilize parameter studies, we adopt the
following reference scales: Length L (already used in Hz), radius RO (inlet radius), twist x0, polar moment
J =(z/2)Ry. Prandtl function scale: @ = (27®)/(Jy; ).

Define the dimensionless axial coordinate and radius[8§]

n=%emLL mm:%?,

so that, for a linear taper, IAQ(U) =1+An,with 1= (R, -R, )/ R, . The boundary conditions become
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o (1,7)=0, @°(0, n):Q:R(n)“, —(p, 0)="(p, 1)=0. (29)
Jo on on
The mapped PDE coefficients 4, B, C, D formally retain their expressions when written in terms of the physical z;
in practice, the discretization remains identical while output and comparisons are reported in the above
nondimensional units.

ANALYSIS OF RESULTS

Using the developed model, the torsional behavior of a circular shaft with a variable diameter along its length was
numerically analyzed through the finite-difference method. The geometry was defined such that the radius gradually
decreased along the shaft’s longitudinal direction, representing a linearly tapered configuration. The computational
scheme evaluated the Prandtl stress function field over the normalized radial and axial coordinates for each
longitudinal section. This scalar field describes how torsional stresses are distributed inside the shaft at different cross-
sections. Boundary conditions were applied consistently with the Saint-Venant torsion theory: the stress potential was
set to zero along the free lateral surface, while the axial centerline values were prescribed according to the type of
loading applied—either torque-controlled or twist-controlled.
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FIGURE 2. Radial profiles of the Prandtl stress function ®(p) at three axial positions.

The curves correspond to z=0m [R =0.05 m], z=05m [R =0.038 m], and z= 1m[R =0.025 m] . For each section

@ is maximal at the axis and vanishes at the boundary, satisfying ®|p=R(z)=0. As the radius decreases along z, the
peak magnitude of ® drops and the profile becomes flatter, indicating reduced torque capacity and lower shear
gradients. The steepest decay is observed at z=0, consistent with the largest section radius and the highest polar
moment. Consequently, for a fixed applied torque T, the twist rate 8'(z) must increase as R(z) shrinks to maintain
equilibrium. Conversely, if 8'(z) is prescribed, the transmitted torque decreases roughly with J(z) <R(z)4, which is
consistent with the observed flattening of @.
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FIGURE 3. Radial shear-stress profiles 1(p,z) at three axial positions.

Stress grows linearly with radius and vanishes on the axis, consistent with elastic Saint-Venant torsion t(r,z)xr.
The slope increases toward the tip (smaller R(z)), so for the same normalized radius p the section with the smallest
radius carries the highest . The maxima occur at the boundaries p=R(z), and the strict linearity indicates the response
remains in the elastic range without yielding.
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FIGURE 4. Comparison of normalized peak shear vs. axial coordinate.



The plot shows (Trz)max/T along the bar for two approaches: a Mechanics-of-Materials (MoM) estimate (dashed
red) and the Finite Difference Method (FDM) solution (solid blue). Both curves decrease monotonically with z,
reflecting the reduction of section radius and torsional rigidity toward the tip. The MoM curve is slightly higher across
the span, indicating a mild overestimation of peak shear when cross-sectional variation is strong. The FDM curve is
consistently lower and smoother, capturing geometric taper and boundary effects more accurately.

CONCLUSION

We presented a finite-difference framework for Saint-Venant torsion of circular shafts with axially varying radius,
obtained by mapping (7,z) to a fixed (p,z) strip and discretizing the resulting elliptic PDE with second-order schemes
(with an optional Chebyshev variant in p). The method consistently handles twist-controlled and torque-controlled
loading through an axis gauge, enforces traction-free lateral boundaries, and is solved efficiently with Successive
Over-Relaxation iterations, yielding fields @, t, and the torque profile T(z). Verification against the classical constant-
radius solution and section-wise trends confirms accuracy; for tapered geometries the FDM captures the expected
decline of @ and (Trz)max toward the tip. Compared with Mechanics-of-Materials estimates, the FDM produces slightly
lower, smoother peak-shear predictions in regions of strong radius variation, indicating reduced overestimation by
simplified formulas. The framework is immediately extensible to temperature-dependent shear modulus and thermal
eigen-twist, making it suitable for design and life assessment of tapered drive shafts, rotors, and industrial rolls.
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