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Abstract. We develop and document a robust finite-difference (FDM) solver for the Saint-Venant torsion of circular, 

axially variable-diameter shafts ( )zRr = . The formulation is based on the Prandtl stress function, mapped to a rectangular 

computational domain via ( )zRr =  with ]1,0[ and ],0[ Lz . The resulting elliptic PDE has variable coefficients 

and a weak mixed derivative; we discretize it with second-order central differences (and, as an alternative, Chebyshev 

collocation in ρ) and solve with Successive Over-Relaxation (SOR) or Krylov methods. Both twist-controlled and torque-

controlled load cases are treated consistently through an axis condition on the stress function. We report implementation 

details, convergence checks, and verification against the classical constant-radius solution. The method produces stress 

distributions   zr , and the torque profile ( )zT ; it is immediately extensible to temperature-dependent shear modulus 

( )TG  and eigen-twist sources driven by thermal gradients. This capability is relevant to design and life assessment of 

power-train shafts, rotors, turbine spindles, and process-industry rolls where diameter tapers or turned shoulders are 

common. 

INTRODUCTION 

Torsion of nonuniform circular shafts arises in numerous engineered systems: automotive and aerospace drive 

shafts with tapered sections, compressor/turbine rotors, line-shafting with bearing seats and fillets, and paper/steel 

mill rolls. Saint-Venant’s theory remains the workhorse for elastic torsion where warping is restrained only by free 

lateral surfaces. Using the Prandtl stress function reduces the equilibrium equations to a scalar elliptic PDE and 

provides direct access to shear stresses and torque. When the radius varies along the axis, ( )zR , the physical domain 

is no longer cylindrical and a practical numerical treatment benefits from a mapping to a rectangle. This paper presents 

a compact, production-ready FDM formulation on ( )z,  grids, including mixed-derivative treatment, boundary/load 

control, and diagnostics for accuracy. For higher spectral accuracy across the radius, we also outline a Chebyshev 

collocation variant in 𝜌[1]. 

MATERIALS, METHODS, AND OBJECT OF STUDY 

The object of study is an axisymmetric circular rod (tapered shaft) made of an isotropic elastic material. The radius 

varies linearly along its length, forming a truncated cone geometry. The analysis assumes axisymmetric torsion with 

the only nonzero displacement component being the circumferential one (𝑟,). 

The material shear modulus 𝐺 is considered both constant and variable along the longitudinal coordinate to model 

thermal or compositional gradients. The effect of temperature is incorporated through a temperature-dependent 

modulus (𝑧,)=𝐺0[1−𝛼𝑇(𝑇(𝑧)−𝑇0)], allowing comparison between purely mechanical and thermomechanically coupled 

torsion cases[2]. 
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FIGURE 1. Axisymmetric circular shaft with variable diameter 

Displacement assumption. For axisymmetric torsion we take only a circumferential displacement, 

 ( ) ,0,0,, === zr uuzruu   (1) 

𝑢 and all fields are independent of ( )( ).0/ =   

Small-strain components in cylindrical coordinates. The engineering shear strains that involve u  are: 
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Derivation sketch. Starting from the small-strain tensor ( )ijjiij uu ,,
2

1
+=  in cylindrical coordinates, the nonzero 

metric coefficients give [3]: 
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With axisymmetry ( )( )0/ =   and 0== zr uu , the engineering (tensor-double) shears are 

./2and//2 zururu zzrr ==−==    

For isotropic linear elasticity the shear stresses are proportional to the shear strains via the shear modulus 𝐺: 

 .,   zzrr GG ==  (4) 

(If desired, 𝐺 may be treated as constant in the baseline model or allowed to vary with temperature ( )TG  in 

extensions.) 

Neglecting body forces, the divergence of the Cauchy stress must vanish. The θ-component of ∇σ=0 in cylindrical 

coordinates is 
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Under axisymmetry ).0/)(( =  and since torsion produces no   contribution in Saint-Venant theory, we 

obtain the scalar equilibrium equation for shear: 
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Following Prandtl’s construction for torsion, we represent the only nonzero shear components by a scalar potential 

Φ=Φ(r,z) as 
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From the axisymmetric kinematics (2) and Hooke’s law (4) we have 
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Compatibility of mixed derivatives, 
zrrz uu ,,  = , together with (8) yields after a short calculation 
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If the lateral surface is traction-free, the shear stress component in the θ-direction projected onto the surface normal 

must vanish. Geometrically, this means that as you move along the boundary Ψ does not change; hence Ψ is constant 

on the boundary.  

 ( ) L],[0,zallfor0,R(z) = z  (10) 

which does not affect stresses because only Ψ-gradients enter   zr , [4 ]. 

Axis regularity: 0→r  Finiteness of rz r ,
2 )/1( −=  on the axis requires 

 ( ) ,0,0, = zr  (11) 

and Ψ(⋅,z) even in 𝑟. This is the standard Saint-Venant regularity for axisymmetric torsion[5]. 

End faces 𝑧=0, 𝐿: Saint-Venant “soft” end assumption 

In Saint-Venant torsion, warping is assumed free at the ends and end effects are neglected. The corresponding 

approximation is an axial “soft” Neumann condition 

 ( ) ( ) ( ),)(00,0, ,, zRrLrr zz ==  (12) 

which states that no axial gradient of Φ is enforced at the ends. This is a standard closure when the torsion is controlled 

by data applied far from the ends. 

Load control: twist-controlled vs moment-controlled. Because stress depends only on Φ-gradients, the loading can 

be enforced through the axis value Φ(0,z). Two practically important control modes are: 

Twist-controlled torsion (prescribed twist rate 𝜅(z)) If the cross-section at axial station 𝑧 is circular of radius R(z), 

the elastic solution for a prismatic slice yields the polar moment of inertia 

 ( ) ( ) .
2

4
zRzJ


=  (13) 

Relating torque, twist, and Φ on the axis gives 
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This sets the axis gauge consistently with the prescribed twist rate [6]. 

When the applied torque per station (𝑧)) is known, the same identity gives the axis value directly, this is the Ψ-

convention counterpart of the classic relation 𝑇=𝐺𝐽𝜅. Note that in the Ψ-convention the torque depends only on the 

axis value: T(𝑧)=2𝜋𝐺Ψ(0,𝑧). 
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NUMERICAL METHOD: 

Consider a circular bar whose radius varies smoothly along the axis 𝑧∈[0,𝐿] according to a prescribed function 

𝑅(𝑧)>0. To place the problem on a fixed computational strip, we introduce the stretched radial coordinate 

 ( ) ],1,0[, =  zRr  (16) 

and define the Prandtl stress function on the mapped domain by 

 ( ) ( ) ( ).),(,, zzRzrz  =  (17) 

Applying the chain rule yields the relations between derivatives of Ψ and Φ: 
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where 𝑅′=𝑑𝑅/𝑑𝑧, 𝑅′′=𝑑2𝑅/𝑑𝑧2. Throughout, subscripts 𝜌 and 𝑧 denote partial differentiation with respect to those 

variables. 

Governing equation in the mapped (𝜌,𝑧)-domain: For axisymmetric Saint-Venant torsion of a circular cross-

section, the Prandtl formulation leads (after mapping) to a linear second-order PDE for Φ(𝜌,𝑧) on the strip 

(𝜌,𝑧)∈(0,1)×(0,𝐿): 

 ( ) ( ) ( ) ,0,,, =+++   zDCzBzA zzz  (19) 
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with coefficients 
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Note that the material shear modulus 𝐺 and the prescribed twist rate 𝜅0 do not appear explicitly in the PDE; they 

enter through boundary data and the post-processing formulas for torque[7]. 

The boundary conditions consistent with Saint-Venant’s assumptions and the mapping are: Lateral (free) surface 

𝜌=1: a constant-gauge condition for the Prandtl function,  

 ( ) ,0,0,1 Lzz =  (21) 

which is equivalent to the traction-free boundary in this formulation.  

Axis regularity/twist control 𝜌=0: imposing the sectional twist 𝜅0 via the classical identity 
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yields the Dirichlet axis condition 
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(In discrete form, axis regularity is enforced by mirroring the first off-axis node, e.g. Φ1,𝑗=Φ0,𝑗.) 

Ends 𝑧=0,𝐿: Saint-Venant “soft ends” (end effects neglected) correspond to homogeneous Neumann data, 

 ( ) ( ) ,10,0,,00, ==  Lzz  (24) 

which are implemented by first-order copies in the axial direction on the mesh. 

Finite-difference discretization (with cross derivative) 

Let  Hii = with ( )1/1 −= RNH  for ( )1/withzand,1,...,0 j −==−= zzzR NLHjHNi  

10for −= Z,...,Nj . Using second-order central differences, we approximate the derivatives at interior nodes 

( ) by,21,21,, −− ZR NjNiji  

 ( ) ( ) ,10,0,,00, ==  Lzz  (25) 
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with the (locally) frozen coefficients 

 ( ) ( ) ( ),,,1,,,, ,,, jijijijijiji zDDCzBBzAA  ====  (27) 

the discrete balance at (𝑖,𝑗) can be written in the symmetric point-Jacobi form 
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where 

 .1,11,11,11,1, −−+−−+++ +−−= jijijijijif   

This linear system is solved efficiently by SOR (successive over-relaxation) with an empirically chosen relaxation 

parameter 𝜔∈(1,2). Neumann end conditions are imposed by copying neighboring interior values in 𝑧, the axis 

condition is Dirichlet (with a mirrored ghost), and the lateral boundary is Dirichlet Φ=0. 

Nondimensionalization. To present results in a scale-free form and to stabilize parameter studies, we adopt the 

following reference scales: Length 𝐿 (already used in 𝐻𝑧), radius 𝑅0 (inlet radius), twist 𝜅0, polar moment 

( ) .2/ 4
0RJ =  Prandtl function scale: ( ) ( )00

* /2  J= .  

Define the dimensionless axial coordinate and radius[8] 
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so that, for a linear taper, ( )  +=1R̂ , with ( ) 001 / RRR −= . The boundary conditions become 
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The mapped PDE coefficients 𝐴, 𝐵, 𝐶, 𝐷 formally retain their expressions when written in terms of the physical 𝑧; 

in practice, the discretization remains identical while output and comparisons are reported in the above 

nondimensional units. 

ANALYSIS OF RESULTS 

Using the developed model, the torsional behavior of a circular shaft with a variable diameter along its length was 

numerically analyzed through the finite-difference method. The geometry was defined such that the radius gradually 

decreased along the shaft’s longitudinal direction, representing a linearly tapered configuration. The computational 

scheme evaluated the Prandtl stress function field over the normalized radial and axial coordinates for each 

longitudinal section. This scalar field describes how torsional stresses are distributed inside the shaft at different cross-

sections. Boundary conditions were applied consistently with the Saint-Venant torsion theory: the stress potential was 

set to zero along the free lateral surface, while the axial centerline values were prescribed according to the type of 

loading applied—either torque-controlled or twist-controlled.  

 
FIGURE 2. Radial profiles of the Prandtl stress function Φ(𝜌) at three axial positions. 

The curves correspond to    ,038.05.0,05.00 mRmzmRmz ====  and  mRmz 025.01 == . For each section 

Φ is maximal at the axis and vanishes at the boundary, satisfying Φ∣𝜌=𝑅(𝑧)=0. As the radius decreases along 𝑧, the 

peak magnitude of Φ drops and the profile becomes flatter, indicating reduced torque capacity and lower shear 

gradients. The steepest decay is observed at 𝑧=0, consistent with the largest section radius and the highest polar 

moment. Consequently, for a fixed applied torque 𝑇, the twist rate 𝜃′(𝑧) must increase as 𝑅(𝑧) shrinks to maintain 

equilibrium. Conversely, if 𝜃′(𝑧) is prescribed, the transmitted torque decreases roughly with 𝐽(𝑧) ∝𝑅(𝑧)4, which is 

consistent with the observed flattening of Φ. 
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FIGURE 3. Radial shear-stress profiles τ(ρ,z) at three axial positions. 

Stress grows linearly with radius and vanishes on the axis, consistent with elastic Saint-Venant torsion 𝜏(𝑟,𝑧)∝𝑟. 

The slope increases toward the tip (smaller 𝑅(𝑧)), so for the same normalized radius 𝜌 the section with the smallest 

radius carries the highest 𝜏. The maxima occur at the boundaries 𝜌=𝑅(𝑧), and the strict linearity indicates the response 

remains in the elastic range without yielding. 

 
FIGURE 4. Comparison of normalized peak shear vs. axial coordinate. 
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The plot shows (𝜏𝑟𝑧)max/𝑇 along the bar for two approaches: a Mechanics-of-Materials (MoM) estimate (dashed 

red) and the Finite Difference Method (FDM) solution (solid blue). Both curves decrease monotonically with 𝑧, 

reflecting the reduction of section radius and torsional rigidity toward the tip. The MoM curve is slightly higher across 

the span, indicating a mild overestimation of peak shear when cross-sectional variation is strong. The FDM curve is 

consistently lower and smoother, capturing geometric taper and boundary effects more accurately. 

CONCLUSION  

We presented a finite-difference framework for Saint-Venant torsion of circular shafts with axially varying radius, 

obtained by mapping (𝑟,𝑧) to a fixed (𝜌,𝑧) strip and discretizing the resulting elliptic PDE with second-order schemes 

(with an optional Chebyshev variant in 𝜌). The method consistently handles twist-controlled and torque-controlled 

loading through an axis gauge, enforces traction-free lateral boundaries, and is solved efficiently with Successive 

Over-Relaxation iterations, yielding fields Φ, 𝜏, and the torque profile 𝑇(𝑧). Verification against the classical constant-

radius solution and section-wise trends confirms accuracy; for tapered geometries the FDM captures the expected 

decline of Φ  and (𝜏𝑟𝑧)max toward the tip. Compared with Mechanics-of-Materials estimates, the FDM produces slightly 

lower, smoother peak-shear predictions in regions of strong radius variation, indicating reduced overestimation by 

simplified formulas. The framework is immediately extensible to temperature-dependent shear modulus and thermal 

eigen-twist, making it suitable for design and life assessment of tapered drive shafts, rotors, and industrial rolls. 
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