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Abstract. The paper considers a numerical solution to the problem of tension of an elastoplastic plate under a parabolic 

load. The elastoplastic boundary value problems are formulated based on the deformation theory of plasticity and the flow 

theory. The discrete analog of the boundary value problem is constructed using the finite difference method and solved by 

an iterative method.  

INTRODUCTION 

The formulation of boundary value problems in plasticity theory depends on the chosen constitutive relations 

specifically, on whether the deformation theory or the flow theory is employed. Within the framework of the 

deformation theory of plasticity, a boundary value problem is analogous to an elastic one. It consists of the 

equilibrium equations, the constitutive relations of the corresponding theory (replacing Hooke’s law), the Cauchy 

relations, and the boundary conditions. The solution of such a problem can be reduced to a sequence of elastic 

problems with a variable nonlinear right-hand side. The so-called method of elastic solutions was first proposed by 

A.A. Ilyushin [1]. This method and its various modifications have been extensively studied in the works of B.E. 

Pobedry [2], D.L. Bykov [3], V.K. Kabulov [4], S.V. Sheshenin [5], among others. 

    In the case of the flow theory, the constitutive relations establish a relationship between the increments of 

stress and strain tensors. Therefore, for a correct formulation of the boundary value problem, the equilibrium 

equations, Cauchy relations, and boundary conditions must be expressed in terms of the increments of the unknown 

quantities. It should be noted that the external load is applied in several increments, and the overall solution is 

constructed as a superposition of the results corresponding to each load increment. The method for solving such 

problems in terms of increments is commonly known as the method of successive loadings, which has been discussed 

in detail in [6–9]. 

The formulation of thermoplastic problems also differs depending on the plasticity theory adopted. In 

thermoplastic boundary value problems, temperature-dependent terms can be treated as body forces, and the solution 

obtained by the method of elastic solutions closely resembles that of a conventional elastic problem. Such problems 

are typically referred to as uncoupled problems of plasticity theory, where the temperature field is assumed to be 

known as the solution of the heat conduction equation. If the temperature field is unknown, the heat flux equation 

with the corresponding boundary and initial conditions must be added to the governing equations. In this case, the 

equilibrium equation is replaced by the equation of motion, resulting in a coupled thermoplastic problem formulated 

within the deformation theory. 

In the case of the flow theory, to formulate a coupled thermoplastic problem, the equations of motion, Cauchy 

relations, and heat flux equations, as well as the initial and boundary conditions, must be differentiated—i.e., 

expressed in terms of increments—and considered together with the incremental constitutive relations. Numerical 

solutions to coupled thermoplastic problems for isotropic and anisotropic materials have been presented in [10–17]. 
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MATERAILS AND METHODS 

In general, a plastic boundary value problem consists of the equilibrium equation [2] 

 ,0, =+ ijij X  (1) 

a nonlinear constitutive relation representing a tensor function between the stress and strain tensors 
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the Cauchy relations  
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where, iu –the displacement components; ii SX , – the body and surface forces, respectively; 21,  – are parts of the 

surface  of the body jinV ,; – the outward normal to the surface  2 of the body V . 

Let us consider the formulation of a boundary value problem according to the deformation theory of plasticity for 

isotropic materials. Typically, the dependence )( uu  = , known as the stress–strain diagram, is determined 

experimentally from uniaxial tension or torsion tests and characterizes the process of plastic deformation. In numerical 

implementations of boundary value problems, it is convenient to represent the stress–strain diagram )( uu  = a 

piecewise-linear form [18]  
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Then the constitutive relations of the deformation theory can be written as  
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Substituting the piecewise-linear form of we obtain  
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When formulating boundary value problems based on the flow theory of plasticity, the constitutive relation (2) in 

the system (1) – (5) is replaced by a relation between the differentials of the stress and strain tensors. Accordingly, to 

formulate the boundary value problem, the equilibrium equations, Cauchy relations, and boundary conditions must be 

differentiated. 

As an example, let us consider the boundary value problem of the flow theory of plasticity with a yield surface in 

the strain space. Then, the boundary value problem, based on the flow theory, consists of the differential form of the 

equilibrium equations [18] 

 ,0, =+ ijij dXd  (9) 

the constitutive relation 
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the Cauchy relations 
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and the boundary conditions 
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Here, ije  – the deviator of the strain tensor, 0, ii SX  – the components of the body and surface forces, F– denotes 

the yield surface,   – the elastic modulus, '  – the tangent modulus. 
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In this section, the well-known Timoshenko–Goodier problem [19] on the tension of a rectangular plate under a 

parabolic load is generalized for an elastoplastic plate. The boundary value problems are formulated based on 

Ilyushin’s deformation theory [20] and the flow theory of plasticity with a yield surface in strain space [18]. 

The elastoplastic boundary value problem of Ilyushin’s theory of small elastoplastic deformations (Ilyushin’s 

deformation theory) consists of the equilibrium equations, the constitutive relations of the deformation theory, and the 

Cauchy relations with the corresponding boundary conditions. 

PROBLEM FORMULATION 

In the case of plane strain, the plastic problem (9) – (12) can be written in terms of displacements as follows  
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with the corresponding boundary conditions  
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where iP  and 
p

ij  represent the nonlinear parts of the Lame equations and the constitutive relation (8), respectively, 

and are given by  
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Initially, the boundary value problem (13)–(15) is considered under the condition 
*

uu   , i.e., within the elastic 

region. Therefore, the nonlinear quantities associated with plastic deformations are assumed to be zero, meaning that 

0=p
ij  and .0=iP  

 

FIGURE 1. Tension of a plastic plate of size ba 22   under a parabolic load. 

Let a rectangular plate of size ba 22   be subjected to a parabolic load (Fig. 1) applied to its opposite edges, while 

the remaining edges are free of external forces. According to Timoshenko and Goodier [19], the boundary conditions 

(15) can be expressed as 
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The boundary conditions (17) – (18) can be expressed in terms of displacements by means of Hooke’s law 
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The finite-difference analog of the boundary value problem (19)–(20), resolved with respect to the nodal 

displacements jiu ,  and jiv ,  and incorporating the iterative parameter )(k , takes the form 
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The boundary conditions for the nodal points can be expressed as 
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Finite-difference equations for the remaining edges of the rectangle can be obtained in a similar manner. By solving 

the boundary conditions with respect to jjNjjN vvuu ,0,,0, ,,,
11

 and combining them with eqs. (21) – (22), the system 

can be solved iteratively. 

The calculated values of the stresses 𝜎11, obtained from the numerical displacements, are presented in Table 1. 

The input parameters used in the computations were as follows  

 .10,2.0,2.0,1,1,75.0,5.1 2121 ======== NNhhba  (25) 

Let us now consider the elastic–plastic problem (13) – (15) within the plastic zone, i.e., taking into account relations 

(16) under the condition 
*

uu   . The finite-difference equations corresponding to the elastic–plastic problem are 

formulated in a similar manner and can be solved using the method of elastic solutions combined with an iterative 

procedure. 
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TABLE 1. Comparison of the stress values S11  at .0=x  

Methods y=0 y=0.2 y=0.4 y=0.6 y=0.8 

Iterative method 0.3202 0.4423 0.5899 0.7235 0.8054 

Timoshenko–

Goodier [9] 
0.3404 0.5166 0.6536 0.7515 0.8102 

The elastic–plastic problem of stretching a plate under a parabolic load was analyzed for the following 

dimensionless input parameters 

 .22.0,4.0,5.0,8.0,3/1,2 *' ====== uE   (26) 

The same problem was also formulated on the basis of the flow theory of plasticity with the loading surface in the 

strain space, using Eqs. (9) – (12).  For the two-dimensional case, the corresponding finite-difference equations were 

derived analogously to the previous (elastic) problem and solved using the method of successive loadings. 

Table 2 presents a comparison of the stress values 𝜎11, obtained numerically from the plasticity problems based 

on the deformation theory and the flow theory of plasticity. 

TABLE 2. Comparison of the stress values  

Theories y=0 y=0.2 y=0.4 y=0.6 y=0.8 y=1 

Deformation Theory 0.7563 0.7309 0.6590 0.5521 0.4211 0.3050 

Flow Theory 0.8035 0.7737 0.6889 0.5796 0.4446 0.3166 

According to Tables 3 and 4, the values of the normal stresses 𝜎11 at the mid-plane of the plate, corresponding to the 

deformation theory and the flow theory of plasticity, are compared.  

 TABLE 3. Values of the stresses ),(11 yx according to the deformation theory of plasticity  

 x=-a x=-4a/5 x=-3a/5 x=-2a/5 x=-a/5 x=0 

y=b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y=4b/5 0.3600 0.3391 0.3656 0.3978 0.4256 0.4352 

y=3b/5 0.6400 0.5650 0.5739 0.5784 0.5823 0.5837 

y=2b/5 0.8400 0.7339 0.7267 0.7065 0.6952 0.6915 

y=b/5 0.9600 0.8359 0.8097 0.7832 0.7665 0.7608 

y=0 1.0000 0.8704 0.8377 0.8095 0.7913 0.7850 

y=-b/5 0.9600 0.8359 0.8097 0.7832 0.7665 0.7608 

y=-2b/5 0.8400 0.7339 0.7267 0.7065 0.6952 0.6915 

y=-3b/5 0.6400 0.5650 0.5739 0.5784 0.5823 0.5837 

y=-4b/5 0.3600 0.3391 0.3656 0.3978 0.4256 0.4352 

TABLE 4. Values of the stresses 𝜎11(𝑥, 𝑦) according to the  flow theory of plasticity 

 x=0 x=a/5 x=2a/5 x=3a/5 x=4a/5 x=a 

y=b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y=4b/5 0.4352 0.4256 0.3978 0.3656 0.3391 0.3600 

y=3b/5 0.5837 0.5823 0.5784 0.5739 0.5650 0.6400 

y=2b/5 0.6915 0.6952 0.7065 0.7267 0.7339 0.8400 

y=b/5 0.7608 0.7665 0.7832 0.8097 0.8359 0.9600 

y=0 0.7850 0.7913 0.8095 0.8377 0.8704 1.0000 

y=-b/5 0.7608 0.7665 0.7832 0.8097 0.8359 0.9600 

y=-2b/5 0.6915 0.6952 0.7065 0.7267 0.7339 0.8400 

y=-3b/5 0.5837 0.5823 0.5784 0.5739 0.5650 0.6400 

y=-4b/5 0.4352 0.4256 0.3978 0.3656 0.3391 0.3600 

y=-b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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CONCLUSION 

Here we provide some basic advice for formatting your mathematics, but we do not attempt to define detailed 

styles or specifications for mathematical typesetting. You should use the standard styles, symbols, and conventions 

for the field/discipline you are writing about. Plane plastic problems of tension of a rectangular plate under a parabolic 

load were formulated within the framework of the deformation theory of plasticity and the flow theory of plasticity 

with a loading surface in the strain space. Using the finite difference method, the corresponding discrete equations 

were derived. These finite-difference equations were solved by means of an iterative method in combination with the 

method of elastic solutions and the method of successive loading. 

A comparison of the plastic zones, displacements, and stress values obtained from the deformation theory and the 

flow theory confirms the validity of the formulated plastic boundary value problems and the reliability of the obtained 

numerical results. 
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