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Abstract. A mathematical model for stabilizing the hydraulic motor of an electro-hydraulic control system is proposed. A 

Lyapunov function ensuring system stability is defined. To determine the optimal stabilizing function of the hydraulic 

system, the Bellman equation is derived using the method of dynamic programming. The optimal stabilizing function for 

electro-hydraulic servo drives has been established. Based on the proposed stabilization model of the electro-hydraulic 

servo system, implemented in the Matlab-Simulink environment, variations of system pressure and the angular 

displacement of the hydraulic motor shaft were obtained, both with and without the stabilizing function, which adequately 

describes the operating process of the hydraulic system. 

INTRODUCTION 

An important direction in automatic control theory is the stabilization of systems. The problem of analyzing and 

synthesizing the stability of motion in various physical systems, particularly hydraulic control systems, remains one 

of the most pressing issues in mechanics and control theory. Advanced hydraulic systems of transport vehicles are 

characterized by the expansion of the functional capabilities of control systems, for which it is necessary to develop 

new schematic solutions for electro-hydraulic control systems with qualitatively new parameters and characteristics.  

The information process from the processing of primary data to the impact of control signals on actuators, together 

with the devices implementing this process, is called a motion control system. The entire set consisting of the moving 

object, its motion control system, and terminal elements (measuring devices and actuators) is referred to as a controlled 

dynamic system [1]. Among the problems of optimal control, an important place is occupied by stabilization of a given 

motion. In [2], the problem of stabilizing dynamic systems in the case of asymptotic stability of a specified motion is 

formulated. These are problems of constructing control actions that ensure stable desired motion with the best possible 

quality of the transient process [3, 4]. 

The stabilization problem is related to the general problem of motion stability. Methods for studying problems of 

optimal stabilization are connected with the classical methods of Lyapunov stability theory [5,6]. In the problem of 

stabilization of both dynamic and hydraulic systems, two tasks arise: a) it is required to find a stabilizing control 

( ) ;, Utxu  , b) the control is given in advance ( )txu , , and it is necessary to verify whether the equilibrium state of 

the system is asymptotically stable 0=x  or not [7]. Studies [8, 9] are devoted to methods of nonlocal synthesis of 

stabilization systems for programmed motions. For many dynamic systems, two problem formulations of synthesis 

are used. In the first formulation, the control is sought as a function of time and the initial state of the system, i.e., in 

the form of optimal programmed control. In the second formulation, the synthesis problem assumes finding the optimal 

control as a function of the current state of the controlled system and time, i.e., in the form of feedback control. The 

solution to the control synthesis problem in the first formulation employs Pontryagin’s maximum principle [10], 

whereas solving the same problem in the second formulation reduces to solving Bellman’s functional equations [11]. 

In [12], the basic principles and techniques of mathematical modeling of hydraulic control systems are presented, 

along with certain stabilization methods used in hydro-automation. In [13], the fundamentals of the theory and 



methods for calculating the dynamic characteristics of hydraulic transmission elements (pumps, hydraulic motors, 

spool valves, hydraulic boosters) are described. Hydraulic systems with mechanical feedback and with 

electromechanical control are also presented. In [14], nonlinear mathematical models of servo hydraulic drives of 

various classes are introduced. The influence of nonlinearities on drive dynamics is considered, as well as special 

types of motion under the combined action of several nonlinearities. In [15], an experimental setup representing a 

prototype of a standard hydraulic forestry crane is studied. A regulator design with a time-varying gain coefficient is 

proposed. Lyapunov-based analysis is presented to demonstrate the stability and convergence properties of the 

algorithms. For analyzing the asymptotic stability of the origin, a continuous positive definite Lyapunov function is 

found such that for any solution of the problem under consideration, monotonic decrease is ensured. In [16], a 

mathematical model of a servo-hydraulic motor was developed, taking into account the compressibility of the working 

fluid, leakages, and friction. The model parameters were determined based on experimental data and comparison with 

simulation results. A PID controller implemented in the Simulink environment was used to control the motor speed. 

The controller design was based on the response of the linear model to a step input. The overshoot that arises when 

applying the controller to the nonlinear system was eliminated by tuning the PID controller coefficients. In [17], a 

mathematical model of a variable-rate fertilizer application system was developed, consisting of an electromagnetic 

proportional valve and a hydraulic motor controlled through the valve. To regulate the motor’s rotational speed, a PID 

controller was applied, with its parameters tuned using the Ziegler–Nichols method. In the MATLAB-Simulink 

environment, transient process analyses were carried out for P, PI, and PID algorithms. The results showed that the 

system with a PID controller exhibited the best dynamic and static characteristics: high response speed, low steady-

state error, and good tracking capability. 

PHYSICAL FORMULATION OF THE PROBLEM 

Let us consider the functional diagram of the electro-hydraulic servo system (EHSS) shown in Fig. 1. The system 

operates as follows. The working fluid from the pump is supplied to the electro-hydraulic distributor (EHD), which is 

controlled by an electrical signal from the controller and redirects the flow toward the hydraulic motor. Under the 

action of the fluid flow, the hydraulic motor begins to rotate, resulting in the formation of an angular velocity . The 

rotation parameters are measured by sensors, and the obtained data are transmitted to the controller through the signal 

transmission system. The controller analyzes the incoming information and generates a control action on the EHD, 

ensuring stable and precise operation of the system. 

 

FIGURE 1. Functional diagram of the electro-hydraulic drive system 



MATHEMATICAL FORMULATION OF THE PROBLEM 

The flow rate of the working fluid passing through the spool valve of the electro-hydraulic control (EHC) system 

is expressed as [4]: 
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пsqq kdk =  – specific conductance of the spool valve orifices; q – flow coefficient of the spool 

valve orifices; sd  – spool diameter; пk  – coefficient of effective utilization of the spool perimeter; sp  – supply 

pressure of the electro-hydraulic distributor (EHD); sp  – drain pressure of the EHD; lp  – load pressure (the pressure 

difference in the chambers of the hydraulic motor). 

Linearizing the right-hand side of equation (1) in the vicinity of, with constant values of the drain pressure and the 

supply pressure of the drive, expression (1) can be replaced by the following equation [4]: 

 ,lQpQxL pКxКQ −=  (2) 

The equation of motion of the output shaft of the hydraulic motor, taking into account the inertial load, has the 

following form [5]: 
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where mJ  – the moment of inertia reduced to the shaft of the hydraulic motor from the controlled EHSS devices 

and the rotating parts of the hydraulic motor; frk  – the coefficient characterizing hydraulic friction in the hydraulic 

motor. 

The flow balance equation, taking into account the compressibility of the fluid in the pipelines connecting the 

electro-hydraulic control unit (EHC) with the hydraulic motor and in the chambers of the hydraulic motor, is written 

in the following form [5]: 
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where 0V  – the volume of the hydraulic line between the electro-hydraulic distributor (EHD) and the hydraulic 

motor, including the connected chambers of the hydraulic motor; B  – bulk modulus of elasticity; mq  – characteristic 

volume of the hydraulic motor;  – angular displacement of the hydraulic motor shaft. 

The voltage at the output of the angular displacement sensor of the hydraulic motor shaft is compared at the input 

of the EHC with the control voltage inu  

( ),pinc Kuu −=  

where pK - positional feedback coefficient. 

Let us consider the system of equations (3)–(4), whose block diagram is shown in Fig. 2. 

Let us introduce the notations 
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Thus, the system of differential equations (3) and (4), taking into account (6), takes the following form: 

 

( ) .
222

,

,

0
3

0
1

0

3

32
2

2
1

x
V

В
Ky

V

В
kKy

V

Вq

dt

dy

y
J

q
y

J

k

dt

dy

y
dt

dy

QxpmQр
m

m

m

m

fr

+−+=

+−=

=

 (7) 



 

FIGURE 2. Block diagram of the linear model of the electro-hydraulic servo system (EHSS) 

Let us determine the steady-state solution of system (7). The equations for finding the steady-state solution take 

the following form: 
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From this, we find that 
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Thus, the stationary solutions of the system take the following form:  
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The task consists in selecting regulator constants such that the obtained solution would possess Lyapunov stability. 

From the system of equations (7), by means of transformations according to the formulas 

 ,,, 330322021101 xyyxyyxyy +=+=+=  (11) 

we obtain the equations of perturbed motion, which take the form 
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Let us study the stability of the stationary solutions of system (12). The stationary equations are given as: 
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Relations (11) define the transformation of shifting the origin of coordinates to the point with coordinates 

( ),,, 302010 yyy  as a result, solution (13) corresponds to the solution of equations (12). 

 .3,2,1,0 == kxк  (14) 

Let us consider the Lyapunov function in the form 
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Let us determine the derivative of the function .V  By virtue of the system of equations (12):  
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Then, in accordance with (12), we have 
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As can be seen from relation (17), the condition 
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is satisfied under the condition 
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It should be noted that if conditions (18) and (19) are satisfied, the function V  is positive everywhere, while V

has the opposite sign and, therefore, according to Lyapunov’s theorem, the perturbed motion in the considered case is 

stable.  

Stabilization of system (12). Let us consider the system of equations (12) taking into account an unknown 

stabilizing function ),,( 321 xxxuu = : 
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As the specified point we take 
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The 

quality of the control process will be evaluated by the performance functional [7]. 
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 Let us determine the optimal strategy ),,( 321 xxxuu = , that effects the transfer of the phase point from an arbitrary 

initial state to the origin, and does so such that the cost functional (21) attains its minimum value along the resulting 

trajectories. 

The Bellman functional equation is represented in the form: 
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To determine the minimum in (22), we differentiate the right-hand side of equation (22) with respect to u  and set 

the result equal to zero. 

 .02
2

=+
dx

ds
u  (23)

 



From expression (23) we determine 
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The solution of equation (22) will be sought in the form 
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The partial derivatives of )(xs are expressed in the form 
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Substituting relations (26) into (22), we obtain 
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The values of the coefficients 21. , bb and 3b are determined from the system of equations 
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The system of equations (28) has two real solutions 
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Solutions (30) and (31), in accordance with relation (24), lead to two synthesizing functions 
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From relations (32) and (33), the stabilization of the system can be ensured by expression (32). 

Thus, the optimal synthesizing function is given by equation (32). 

RESULTS AND DISCUSSION  

Figure 3 shows the block diagram of the optimal system. 



 

FIGURE 3. Block diagram of the optimal system 

The following values of the parameters were used in the simulation: 
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Figures 4 and 5 show the changes in system pressure and the angular displacement of the hydraulic motor shaft, 

both without and with the stabilizing function taken into account. 

  
FIGURE 4. Change in hydraulic system pressure without and 

with the stabilizing function 

FIGURE 5. Change in the angular displacement of the 

hydraulic motor shaft without and with the stabilizing 

function 

As can be seen from Figures 4 and 5, the proposed stabilizing function, which depends on the moment of inertia 

reduced to the hydraulic motor shaft of the controlled EHSS devices and the rotating parts of the hydraulic motor, as 

well as on the coefficient characterizing hydraulic friction in the hydraulic motor, ensures the stabilization of the 

system. 

CONCLUSION 

A Simulink model for stabilizing the motion of an electro-hydraulic servo system has been developed. A Lyapunov 

function ensuring system stability was defined. To determine the optimal stabilizing function of the hydraulic system, 

the Bellman equation was obtained using the method of dynamic programming. Based on the proposed stabilization 

model of the EHSS, implemented in the Matlab-Simulink environment, variations in system pressure and the angular 

displacement of the hydraulic motor shaft were obtained, both with and without the stabilizing function, which 

adequately describes the operating process of the hydraulic system. An optimal stabilizing function for the electro-

hydraulic servo system is proposed, which depends on the moment of inertia reduced to the shaft of the hydraulic 

motor from the controlled EHSS devices and rotating parts of the hydraulic motor, as well as on the coefficient 



characterizing hydraulic friction in the motor. This function ensures system stabilization and can be applied when 

selecting compensating devices in the design of hydraulic systems.  
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