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Abstract. A mathematical model for stabilizing the hydraulic motor of an electro-hydraulic control system is proposed. A
Lyapunov function ensuring system stability is defined. To determine the optimal stabilizing function of the hydraulic
system, the Bellman equation is derived using the method of dynamic programming. The optimal stabilizing function for
electro-hydraulic servo drives has been established. Based on the proposed stabilization model of the electro-hydraulic
servo system, implemented in the Matlab-Simulink environment, variations of system pressure and the angular
displacement of the hydraulic motor shaft were obtained, both with and without the stabilizing function, which adequately
describes the operating process of the hydraulic system.

INTRODUCTION

An important direction in automatic control theory is the stabilization of systems. The problem of analyzing and
synthesizing the stability of motion in various physical systems, particularly hydraulic control systems, remains one
of the most pressing issues in mechanics and control theory. Advanced hydraulic systems of transport vehicles are
characterized by the expansion of the functional capabilities of control systems, for which it is necessary to develop
new schematic solutions for electro-hydraulic control systems with qualitatively new parameters and characteristics.

The information process from the processing of primary data to the impact of control signals on actuators, together
with the devices implementing this process, is called a motion control system. The entire set consisting of the moving
object, its motion control system, and terminal elements (measuring devices and actuators) is referred to as a controlled
dynamic system [1]. Among the problems of optimal control, an important place is occupied by stabilization of a given
motion. In [2], the problem of stabilizing dynamic systems in the case of asymptotic stability of a specified motion is
formulated. These are problems of constructing control actions that ensure stable desired motion with the best possible
quality of the transient process [3, 4].

The stabilization problem is related to the general problem of motion stability. Methods for studying problems of
optimal stabilization are connected with the classical methods of Lyapunov stability theory [5,6]. In the problem of
stabilization of both dynamic and hydraulic systems, two tasks arise: a) it is required to find a stabilizing control
u(x,t) e U;, b) the control is given in advance u(x,t), and it is necessary to verify whether the equilibrium state of

the system is asymptotically stable x =0 or not [7]. Studies [8, 9] are devoted to methods of nonlocal synthesis of
stabilization systems for programmed motions. For many dynamic systems, two problem formulations of synthesis
are used. In the first formulation, the control is sought as a function of time and the initial state of the system, i.e., in
the form of optimal programmed control. In the second formulation, the synthesis problem assumes finding the optimal
control as a function of the current state of the controlled system and time, i.e., in the form of feedback control. The
solution to the control synthesis problem in the first formulation employs Pontryagin’s maximum principle [10],
whereas solving the same problem in the second formulation reduces to solving Bellman’s functional equations [11].
In [12], the basic principles and techniques of mathematical modeling of hydraulic control systems are presented,
along with certain stabilization methods used in hydro-automation. In [13], the fundamentals of the theory and
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methods for calculating the dynamic characteristics of hydraulic transmission elements (pumps, hydraulic motors,
spool valves, hydraulic boosters) are described. Hydraulic systems with mechanical feedback and with
electromechanical control are also presented. In [14], nonlinear mathematical models of servo hydraulic drives of
various classes are introduced. The influence of nonlinearities on drive dynamics is considered, as well as special
types of motion under the combined action of several nonlinearities. In [15], an experimental setup representing a
prototype of a standard hydraulic forestry crane is studied. A regulator design with a time-varying gain coefficient is
proposed. Lyapunov-based analysis is presented to demonstrate the stability and convergence properties of the
algorithms. For analyzing the asymptotic stability of the origin, a continuous positive definite Lyapunov function is
found such that for any solution of the problem under consideration, monotonic decrease is ensured. In [16], a
mathematical model of a servo-hydraulic motor was developed, taking into account the compressibility of the working
fluid, leakages, and friction. The model parameters were determined based on experimental data and comparison with
simulation results. A PID controller implemented in the Simulink environment was used to control the motor speed.
The controller design was based on the response of the linear model to a step input. The overshoot that arises when
applying the controller to the nonlinear system was eliminated by tuning the PID controller coefficients. In [17], a
mathematical model of a variable-rate fertilizer application system was developed, consisting of an electromagnetic
proportional valve and a hydraulic motor controlled through the valve. To regulate the motor’s rotational speed, a PID
controller was applied, with its parameters tuned using the Ziegler—Nichols method. In the MATLAB-Simulink
environment, transient process analyses were carried out for P, PI, and PID algorithms. The results showed that the
system with a PID controller exhibited the best dynamic and static characteristics: high response speed, low steady-
state error, and good tracking capability.

PHYSICAL FORMULATION OF THE PROBLEM

Let us consider the functional diagram of the electro-hydraulic servo system (EHSS) shown in Fig. 1. The system
operates as follows. The working fluid from the pump is supplied to the electro-hydraulic distributor (EHD), which is
controlled by an electrical signal from the controller and redirects the flow toward the hydraulic motor. Under the
action of the fluid flow, the hydraulic motor begins to rotate, resulting in the formation of an angular velocity «.The
rotation parameters are measured by sensors, and the obtained data are transmitted to the controller through the signal
transmission system. The controller analyzes the incoming information and generates a control action on the EHD,
ensuring stable and precise operation of the system.

o
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FIGURE 1. Functional diagram of the electro-hydraulic drive system
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MATHEMATICAL FORMULATION OF THE PROBLEM

The flow rate of the working fluid passing through the spool valve of the electro-hydraulic control (EHC) system
is expressed as [4]:

— py — p;Signx
QL:kqx Ps pdzpl g , (1)
1, x>0,
sign(x): 0,x=0,
-1, x<O.

where k, = u,7d k, \/% — specific conductance of the spool valve orifices; ,— flow coefficient of the spool

valve orifices; d; — spool diameter; k, — coefficient of effective utilization of the spool perimeter; p, — supply
pressure of the electro-hydraulic distributor (EHD); p, — drain pressure of the EHD; p; — load pressure (the pressure
difference in the chambers of the hydraulic motor).
Linearizing the right-hand side of equation (1) in the vicinity of, with constant values of the drain pressure and the
supply pressure of the drive, expression (1) can be replaced by the following equation [4]:
0, =Kox—Kg,ps ?2)
The equation of motion of the output shaft of the hydraulic motor, taking into account the inertial load, has the
following form [5]:
2
In Sk S = @)
where J,, — the moment of inertia reduced to the shaft of the hydraulic motor from the controlled EHSS devices
and the rotating parts of the hydraulic motor; & ;, — the coefficient characterizing hydraulic friction in the hydraulic

motor.

The flow balance equation, taking into account the compressibility of the fluid in the pipelines connecting the
electro-hydraulic control unit (EHC) with the hydraulic motor and in the chambers of the hydraulic motor, is written
in the following form [5]:

Vy dp, da
— L4k =0, —qp—o> 4
2B dt pmpl QL 9m dt ( )

where ¥, — the volume of the hydraulic line between the electro-hydraulic distributor (EHD) and the hydraulic

motor, including the connected chambers of the hydraulic motor; B — bulk modulus of elasticity; ¢, — characteristic
volume of the hydraulic motor; & — angular displacement of the hydraulic motor shaft.
The voltage at the output of the angular displacement sensor of the hydraulic motor shaft is compared at the input
of the EHC with the control voltage u,,
U, = (uin - Kpa)’
where K, - positional feedback coefficient.

Let us consider the system of equations (3)—(4), whose block diagram is shown in Fig. 2.
Let us introduce the notations

A=Y, A=Y Py = Vs (6)
Thus, the system of differential equations (3) and (4), taking into account (6), takes the following form:
CAT
e %
dy2 kf'” dm
2 Ty dm, 7
d 7 Y2 7 V3 @)
dy; 2Bgq,, 2B 2B
—=—2y +\Kp, k| —13 + Ko, —x.
dt VO N ( Op pm)VO V3 Ox V()
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FIGURE 2. Block diagram of the linear model of the electro-hydraulic servo system (EHSS)

Let us determine the steady-state solution of system (7). The equations for finding the steady-state solution take
the following form:

¥ =0,
k
S dm
~ Ly Iy =0, 8
7,0, @®)
2Bq,, 2B 2B
- +\Kp, =k | —y3 + Koy, —x=0.
VO N ( Op pm)VO Y3 Ox V()
From this, we find that
K xX0
n=—E y, =0, y; =0. ©
m
Thus, the stationary solutions of the system take the following form:
KXo
leZQ_x’ Y20=0, y3=0. (10)
dm

The task consists in selecting regulator constants such that the obtained solution would possess Lyapunov stability.
From the system of equations (7), by means of transformations according to the formulas

YI=Y0t X Ya =V tXy, Y3=Y30 X3, (11)

we obtain the equations of perturbed motion, which take the form

X =Xy,
k.
. Jr Im
Xy =——— X+, 12)
‘]m ‘]m
2Bgq,, 2B
Xy = 1—(KQ k )—x3.
v, G A
Let us study the stability of the stationary solutions of system (12). The stationary equations are given as:
x, =0,
k r
AN L) (13)
Jm m
2Bgq,, 2B
——x —\Kp, =k, J—/—x;=0.
v, 1 ( Op pm) v, 3

Relations (11) define the transformation of shifting the origin of coordinates to the point with coordinates
(ylo, Y205 y30), as a result, solution (13) corresponds to the solution of equations (12).

x, =0, k=123. (14)

Let us consider the Lyapunov function in the form
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1
V:E(x12+x§+x32) (15)

Let us determine the derivative of the function V. By virtue of the system of equations (12):

— = XX + XX, +X3X5. (16)
Then, in accordance with (12), we have
av k/'r kpm 'ZBmp 2 q
— =———x, | ———— =K, ¥ —q,,x%; + X% + X, X5. 17
o sz 7 op X3 — X1 X3 X1, mz3 (17)
As can be seen from relation (17), the condition
dav
—<0 18
o (18)
is satisfied under the condition
k2B
222 Ko, 0. (19)

o

It should be noted that if conditions (18) and (19) are satisfied, the function ¥ is positive everywhere, while V'
has the opposite sign and, therefore, according to Lyapunov’s theorem, the perturbed motion in the considered case is
stable.

Stabilization of system (12). Let us consider the system of equations (12) taking into account an unknown
stabilizing function u =u(x;,X,,x3) :

X| =Xy,
k

iy =Ly 4 dm e, (20)
J”l Jm

. 2Bgq, 2B

Xy=—x —\K,, -k J—x;.

3 v, 1 (Qp pm)VO 3

KQxxO

As the specified point we take x*[ ,0, 0] , from (10), the origin of coordinates; i.c., we set x« = 0. The

q m

quality of the control process will be evaluated by the performance functional [7].

T
1:j(x$+x§+x§+u2)dt. @1
0

Let us determine the optimal strategy u = u(x;,x,,X3) , that effects the transfer of the phase point from an arbitrary

initial state to the origin, and does so such that the cost functional (21) attains its minimum value along the resulting
trajectories.
The Bellman functional equation is represented in the form:

. 0s os [ kg
min x,2+x§+x§+u2+—x2 T xz—hx3 +u [+
u ox; ox, \ J J

m m

Os k2B
| — g x + (K gy — 22" xs |
6)63[ qm*1 ( Op VO ) 3J

(22)

To determine the minimum in (22), we differentiate the right-hand side of equation (22) with respect to » and set
the result equal to zero.

2+ B o, 23)
dx,

041 annakulovas SW EE2025.docx M ainDocument AIPP Review COpy On/y 6



Auto-generated PDF by ReView

Advanced Study Workshop on Earthquake Engineering

From expression (23) we determine
1 ds

B 2 dx,

The solution of equation (22) will be sought in the form
5(X) =bx{ +byX3 +byx3.

The partial derivatives of s(x)are expressed in the form

& 2bx,, O 2b,x,, O 2byx5.
ox, Ox, Ox3

Substituting relations (26) into (22), we obtain

2b,k
xl2 + x% + x32 —(b2x2 )2 +2bx;x, —Axg +2byq,,xx3 +

m

2 k,, 2B
2D 223 420, K, -2 x2=0.
J 7

m

The values of the coefficients b, b, and b, are determined from the system of equations

y

o

2 2kfr
b =0, b, +———@—4J@=—7T———————7
J 2K, Vo — k2B

m

k, k5 +J2
b[zo,bzzﬁJﬁi S b Vo

J 2Ky o —kp2B)

s U3 —
m m

The system of equations (28) has two real solutions

k, kL +JT2
b =0, by=—L 4 X7 b &l

Jw o w7 2AKg Ve —k,2B)
2 2
b =0. b, = kf" kﬁ'+Jm b VO
1= Y 2=

T Jn T ARy Ve —kpm2B)

Solutions (30) and (31), in accordance with relation (24), lead to two synthesizing functions

2 2
1 kf;/ kfr + ‘]m

U=—| —-——"—"1|x,
2, . [°
1 kfr Vk?r-‘—"]’z”

Uu=— + Xz.
21 J J

m m

From relations (32) and (33), the stabilization of the system can be ensured by expression (32).

Thus, the optimal synthesizing function is given by equation (32).
RESULTS AND DISCUSSION

Figure 3 shows the block diagram of the optimal system.

24

(25)

(26)

27

(28)

29

(30)

(€19

(32)

(33)
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FIGURE 3. Block diagram of the optimal system

The following values of the parameters were used in the simulation:
Ko, =1865 m*/c; Ky, =1259 m*/ Pa-s; B=8-10° Pa; V, =0,175-107 m’; k ,,, =4,82:107"% m*(Pa - s);
Gy =5.68-10"° m’; k;, =0,973 Nms; p, - p; =1-107 Pask,=834-10"*,
Figures 4 and 5 show the changes in system pressure and the angular displacement of the hydraulic motor shaft,
both without and with the stabilizing function taken into account.
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FIGURE 5. Change in the angular displacement of the
hydraulic motor shaft without and with the stabilizing
function

FIGURE 4. Change in hydraulic system pressure without and
with the stabilizing function

As can be seen from Figures 4 and 5, the proposed stabilizing function, which depends on the moment of inertia
reduced to the hydraulic motor shaft of the controlled EHSS devices and the rotating parts of the hydraulic motor, as
well as on the coefficient characterizing hydraulic friction in the hydraulic motor, ensures the stabilization of the

system.

CONCLUSION

A Simulink model for stabilizing the motion of an electro-hydraulic servo system has been developed. A Lyapunov
function ensuring system stability was defined. To determine the optimal stabilizing function of the hydraulic system,
the Bellman equation was obtained using the method of dynamic programming. Based on the proposed stabilization
model of the EHSS, implemented in the Matlab-Simulink environment, variations in system pressure and the angular
displacement of the hydraulic motor shaft were obtained, both with and without the stabilizing function, which
adequately describes the operating process of the hydraulic system. An optimal stabilizing function for the electro-
hydraulic servo system is proposed, which depends on the moment of inertia reduced to the shaft of the hydraulic
motor from the controlled EHSS devices and rotating parts of the hydraulic motor, as well as on the coefficient
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characterizing hydraulic friction in the motor. This function ensures system stabilization and can be applied when
selecting compensating devices in the design of hydraulic systems.
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