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Abstract. The classical Fisher linear discriminant analysis (CFLDA) has been proven to be optimal when assumptions of normality and equal variance-covariance matrix hold. However, the CFLDA performs poorly if the classical sample mean and covariance matrix are used to build the training set. Different researchers have proposed different techniques to robustify CFLDA by penalizing the covariance matrix to obtain improved classification accuracy. This study proposed to robustify the CFLDA and to investigate whether the proportion of the training sample and validation sample influences classification accuracy. Therefore, the influence of training and validation samples on classification accuracy is investigated using the apparent error rate as a performance benchmark. The results demonstrated that a large training sample and a small testing sample enhance robust classification accuracy than a small training and large testing sample. Therefore, this study concludes that a large training sample and small testing sample yield better classification accuracy than a small training and large testing sample for both classical and robust FLDA classifiers.
.
INTRODUCTION
The classical Fisher linear discriminant analysis (CFLDA) is a linear combination of observed or measured variables that best describes the separation between known groups of observations [1].  Its basic objective is to classify or assign objects where the dependent variables appear in a qualitative form [2]. The Fisher linear discriminant analysis is a conventional multivariate technique for dimension reduction and classification. The classification performance of CFLDA will collapse if the training sample contains outlying observations [3]. This occurs because Fisher's criteria only assume the differences between the group means, which leads to overlap distribution on the projection space [4,5]. Various authors have suggested replacing the classical estimators with robust multivariate estimators[3][6-8]. Compbell [9] proposed to replace the classical sample mean and covariance matrix with a smooth estimator; meanwhile, Rousseeuw [10], Chork and Rousseeuw [11], and Hawkins and Mclachlan [12] applied minimum volume ellipsoid (MVE) and minimum covariance determinant (MCD) to robustify the classical estimators. The maximum likelihood estimators and M estimators [13,14] were used to robustify the FLDA, and the S estimators [14-19] were also proposed to robustify FLDA. It was discovered that Hubert and Van Driessen [20], and Rousseeuw [21] applied fast MCD estimators of location and shape on FLDA. Variants of robust procedure were discussed by Okwonu and Othman [22,23], probability classifier [24] and adjusted mean procedure [25-27]. The proposed robustification approach was basically designed to replace conventional estimators with robust estimators (plug-in techniques). Various authors have suggested using small sample sizes with high-dimensional sample sizes; this prompted the modifications, generalization, penalization, and localization of FLDA [28-33].
This study is designed to investigate the effect of the proportion of training and validation samples on the classifier’s performance. To achieve the objectives of this study, we proposed to robustify the CFLDA, which utilizes the features of the weight technique based on the Mahalanobis distance concept. Therefore, the proposed weighted robust technique focuses on reducing the influence of outliers from hampering the classifier's performance or the accuracy of the CFLDA. 
This paper is organized as follows. In Section 2, we describe classical FLDA. Robust FLDA is presented in Section 3. Simulation and conclusions are presented in Sections 4 and 5, respectively.

MATERIAL AND METHOD
Classical Fisher Linear Discriminant Analysis
Fisher suggested transforming multivariate observations to univariate observations such that the univariate observations derived from each population are maximally separated. The separation of these univariate observations can be examined by their mean difference [34]. The Fisher classification rule maximizes the variation between samples' variability to within-sample variability [35]. In this section, we describe Fisher linear discriminant analysis for two groups.
Consider classifying an observation vector  into one of two populations, say , the population mean vectors and covariance matrix are denoted as  respectively. Since the population mean vectors and covariance matrix are unknown, the sample estimate is used in this paper. Formally, we define the sample mean vectors, sample covariance matrix, and pooled sample covariance matrix as follows.








Based on the above parameters, Fisher linear discriminant analysis [36] can be stated as;

	   				(1)

				 	(2)


Equations (1) and (2) are the discriminant coefficient and discriminant mean, respectively. The classification rule based on (1) and (2) can be described as follows:


Allocate to group one, if 




otherwise allocate to group two, if


Fisher maintained that his techniques adhere strictly to equal variance-covariance matrix of the two normal populations. The CFLDA has been extended to more than two groups [36,37] with robust variants of estimators.



Robust Fisher Linear Discriminant Analysis
In this subsection, we attempt to robustify classical FLDA. Robustness implies a reduction in error rates due to classifiers that do not conform to the assumptions on which the conventional model was built. The poor performance of CFLDA can be attributed to the classical estimators used in training the model. The classical sample mean and covariance matrix are susceptible to outlying observations. Various researchers have diversified different ways to robustify CFLDA, and the most popular of them all is the plug-in approach [6, 9-11, 15, 17, 18, 20, 38-40]. The robust approach proposed in this paper applies weight to robustify the sample mean and covariance matrices. We also apply the ideas of the CFLDA to build on our approach. The criterion used here is based on comparing the Mahalanobis distance (MD) with the Chi-square value to identify outlying observations. This technique applies weight to the samples to filter the outliers, thereby using weighted inliers to compute the weighted sample mean and weighted pooled variance covariance matrix. The weighted sample mean and the pooled sample variance covariance are plugged into the CFLDA to obtain the robust FLDA (RFLDA). The method is briefly described as follows.
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The index indicates the number of groups andindicates the dimension. Equations (3), (4) and (5) are the weight, weighted group mean vectors, and weighted variance covariance matrix, respectively. Equation (5) is pooled to obtain the pooled variance-covariance matrix. A penalized constant  is added to the inverse of the pooled variance covariance matrix to compensate for the zero lost weight. The RFLDA coefficient (6) and its discriminant mean (7) are described as follows;


					(6)
where 





					(7)

The classification rule based on (6) and (7) is described as follows.


Allocate to group one if




otherwise allocate to group two if



The performance of the proposed methods depends strictly on the choice of training and validation samples. This assumption will be verified using numerical simulation. In addition to the above assumption, the new approach concurs with the conventional assumptions of classical Fisher linear discriminant analysis.


Performance Evaluation
The misclassification rate (ɱ) of these methods could be measured as follows.
ɱ=1-AER.					(8)

The apparent error rate (AER) was derived from the confusion matrix. The diagonal of the confusion matrix is AER, which represents the probability of correct classification, while ɱ is the off-diagonal of the confusion matrix.

SIMULATION

Simulation is performed to investigate the robustness of the proposed method against the classical method and to examine the influence of the proportion of the training and validation (testing) sample sizes on classification accuracy. The sample size for the two groups is equal,  The data used in this experiment was randomly generated. We performed the experiment using unscaled normal data and scaled normal data. Unscaled normal data refers to data generated from a normal distribution that is used as is, without any standardization or normalization. In contrast, the scaled normal data means that after generating the data, each variable (feature) has been standardized or normalized so that all features are on a comparable scale. The sample mean and covariance matrix are fixed. The experiments were run 1000 times, and the average number of runs was reported.
Our study revealed that classification accuracy depends on the proportion of training and validation samples used to train and test the classifiers. Table 1 below illustrates the effects of the choice of sample sizes on classification accuracy. Also, Table 1 describes the proportion of objects correctly classified, while Fig. 1 represents the probability of objects being misclassified.

TABLE 1. Comparative performance of the classifiers for unscaled normal data
	Sample size
	Methods /Apparent Error Rate (AER)

	Training
	Validation
	CFLDA
	RFLDA

	20
	80
	0.995
	0.969

	30
	70
	0.996
	0.975

	40
	60
	0.997
	0.983

	50
	50
	0.997
	0.980

	60
	40
	0.997
	1.000

	70
	30
	0.997
	1.000

	80
	20
	0.997
	1.000
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FIGURE 1. Effects of training sample sizes on classification performance
The results in Table 1 were simulated for the unscaled normal data for two groups. Table 1 reveals that the proportion of training and validation sample size used on the classifier determines the accuracy of the model. Thus, using the training sample to build and validate the classifier will not reveal this phenomenon due to upward bias. This experiment reveals that 50% for the training sample and 50% for validation is reasonable for better classification; however, we observed that 60% training sample and 40% testing work well for both classifiers. Based on the simulation results, we recommend using a 70-30 ratio for training and validation. Although the 50-50 and 60-40 splits produced reasonable results, the 70-30 split achieved higher and more consistent classification accuracy across replications. This proportion offers a better balance between model learning and performance evaluation. The larger training sample ensures stable parameter estimation and more reliable decision boundaries, while the 30% validation set remains sufficiently large to yield an unbiased estimate of the true classification accuracy. Therefore, the 70–30 split minimizes the bias–variance trade-off and provides more robust and generalizable classification performance.
Table 2 and Fig. 2 affirmed the result in Table 1 and Fig. 1. This showed that, although if the data is scaled, the proportion of sample sizes used in training and testing influences the classification performance of these classifiers. From both tables and figures, we observed that the robust approach performs optimally if we use 70% and a 30% sample size for training and validation. On the other hand, the conventional approach (Table 1) attained better classification if we decided to use 60% for training and 40% for validation.

TABLE 2. Comparative performance of the classifiers for scaled normal data
	Sample size
	Methods /Apparent Error Rate (AER) 

	Training
	Validation
	CFLDA
	RFLDA

	20
	80
	0.604
	0.518

	30
	70
	0.606
	0.532

	40
	60
	0.608
	0.553

	50
	50
	0.609
	0.586

	60
	40
	0.609
	0.67

	70
	30
	0.609
	0.811

	80
	20
	0.61
	0.65



[image: A graph with blue and orange lines

AI-generated content may be incorrect.]
	
	


	







FIGURE 2. Effects of training sample sizes on classification performance

From Table 1 and Table 2, we observed that, irrespective of data transformation, the CFLDA performance is more consistent in terms of training and validation choices than the RFLDA.

CONCLUSION

We have reviewed and proposed the robustification of the classical Fisher linear discriminant analysis. The RFLDA is robust when the training sample is above 60% and the validation sample is below 40%. The numerical simulation results showed that the RFLDA outperforms the CFLDA. The results from simulations revealed that the choice of training and validation sample sizes plays a significant role in the classification process. Therefore, the efficacy of any classification model depends on the proportion of the training and validation samples. This study concludes that the proportion of training and validation samples affects the classifier's performance. This study is limited to normally distributed data with equal group sizes and fixed covariance structures, which may not fully represent real-world conditions. Future research should validate the robustness of the proposed RFLDA using non-normal and unbalanced data, and compare its performance with other modern classification methods to strengthen its general applicability.
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