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Abstract. The evaluation of assignment problems for job suppliers is necessary to meet demands; therefore, academics in the operations research field and management factories have paid considerable attention to assignment problems. Notably, because the central point of classical assignment models with parameters assumes that supplier management oversees all inputs and outputs are fixed data, these types of models cannot provide exact and accurate data. Hence, specific inputs and/or outputs can be improper and ambiguous.  Consequently, existing studies have explored various approaches to determine an optimal route that corresponds to assignments to suppliers when ambiguous values are involved. However, the computation of multiple routes for each assignment problem has yet to be explored. Thus, the objectives of this paper propose a new hybrid approach that combines the average ranking method (ARM) with triangular ambiguous values and a super-efficient approach in graph theory, called the brute force method (BFM), which can obtain multiple route results. The proposed method is advantageous in identifying supplier rankings and distinguishing between efficient and inefficient suppliers. The numerical results show that different routes to achieve optimality, which affirms the benefit of developing the proposed method in this article.
iNTRODUCTION
Optimization problems are more practical to solve using a linear programming approach. Specifically, linear assignment problems are a special type of linear programming which deals with assigning n jobs to m demands in an injective form in the best feasible way [1, 2]. In such an assignment problem scenario, one usually encounters a situation where the constraints under consideration are linear [2–4], with inequality or equivalent functions. As a result of the form of the functions, various types of optimization problems in scheduling [5–7], transportation [8–10], engineering [11], and other areas [12–16] have been developed.
In the business operations and logistics area, assignment problems are essential [17]. This is because scenarios requiring the maximization or minimization of the objective function is needed. This paper aims to find an optimal allocation of resources to corresponding tasks, thereby minimizing costs [1]. Various methods have been developed over the years to achieve this objective. Öznur et al. [18] highlighted that the classical algorithms used for solving assignment problems include the brute-force, branch boundary, and Hungarian algorithms. Whereas the study [18] also identified parallel auction, genetic, greedy, and penalty algorithms as heuristic algorithms for solving assignment problems. The relevance of assignment problems to current literature was justified by a detailed review of approaches for assignment problems as conducted by [12]. In the hierarchical findings presented, the order of most applied approaches was as follows: exact methods, storage policies and rules, heuristic and metaheuristic methods, simulation methods, and multi-criteria techniques for proposing solutions to assignment problems. Although problems generally arise from scenarios where assignment problems are encountered, particularly when ambiguity or uncertainty is present, which is a common occurrence in the real world [1, 19]. When this occurs, fuzzy theory is applied to a range of ambiguous values, resulting in assignment problems involving ambiguous values.
The concepts of assignment problems with ambiguous values using fuzzy theory [20] have brought to light various approaches, such as the use of the robust ranking and Haar ranking with the Hungarian algorithm by [21–23], and the weight assignment to objectives approach by [15] to merge all the objectives into a single problem. Ambiguous values with symmetric intervals were considered by [24], who used the positional technique to transform these values. A goal programming technique was implemented by [25], utilizing the property of priorities for the ambiguous values. Other related studies include [2, 3, 6, 13, 26–30]; however, two main limitations were identified, which include the dearth of research in the development of the hybrid method of average ranking process with the brute force method, and the inability of these existing approaches to provide multiple route solutions. 
Hence, to address these shortcomings, this article will discuss the development of the new approach in the section, while an application to a numerical example, illustrating the multiple routes solution, will be presented thereafter. Relevant discussions and interpretations will be provided, and a concluding section to the article.
mETHODOLOGY
The proposed method in this article combines the average ranking method and brute force method (ARM-BFM). Thus, the computation is performed in two parts, where the first part utilizes the average ranking method to transform the triangular ambiguous values of fuzzy assignment problems into a canonical process. The first part essentially converts the ambiguous values into crisp values using a defuzzification approach known as the average ranking method [30]. Then it presents the results to achieve the optimal point. Thereafter, the second part commences, where the brute force method is utilised to obtain the optimal multiple routes available in the solution of the assignment problem.
The class of ambiguous values under consideration takes the form  with tri-values and corresponding membership function

									(1)
where the general membership function  is the value on the unit interval that measures the degree to each  belongs to a fuzzy set  [31]. That is .
The average ranking process is considered such that the x-axis line contains discrete positive values , where  represents the number of intervals between the discrete values, with each interval having a lower bound (Lb) and an upper bound (Ub). 
That is  ,  k, where . In line with [32], the average of the averages for all intervals is obtained as
 .										(2) 
If  then the number of intervals is  with i corresponding with tri-values , and gives
											(3)
Recalling that the ambiguous values under consideration are tri-values, thus   and  is
.						(4)
The average (Avg.) of Lb and Ub for each interval is computed using
.						(5)
This leads to obtaining the sub-interval average for the ranking function by mathematically dividing Equation (5) by six, which yields:
										(6)
Equations (2)-(6) show the steps involved in obtaining the required expression for the average ranking process. Next, the assignment problem is defined.
The mathematical formulation of the assignment problem considered in this article, in which a decision maker represents the objective function as , which involves minimizing total costs using ambiguous values. Consequently, the constraints under the assignment of jobs in this kind of scenario to workers are a realistic resolution where one job supply is assigned per demand. Thus, requiring n job supply to perform m demands.
The original canonical form can be defined as follows.
				(7)
subject to
         	                      				      		   	(8)
  									(9)
	
where                  
The cost assignment denotes the unit cost of assigning job supply ( to the demand ). Hence, the model is reformulated through assignment matrices as shown in Table 1.

TABLE 1. Assignment Fuzzy Costs Matrix
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Therefore, the conversion of ambiguous cost values into crisp cost values is performed using the already derived average ranking process (ARP), and subsequently, the procedure to determine the best path to reach the minimum cost commences through the adoption of the brute force method. The procedure is based on generating  possible job of supply assignments for each demand  of such an assignment. The exact number of calculations needed to determine the optimal value using the brute force method is established analytically, as this number of operations will always be required and is a very rapidly growing number. 
The total cost is computed to return the least expensive assignment. Then, the costs of the whole matrix in the assignment problem are calculated. Specifically, this method is characterised for use in large assignment problems with its corresponding iterator shown in Table 2 below.

TABLE 2. The Procedure of the Brute Force Method Iterations
	
	
	

	
	
	

	
	
	

	
	
	

	
 
	

	


	 
	
	



Table 2 above illustrates how this method’s behaviour is wide and more flexible in identifying several routes and achieving minimum costs, beginning at  and continuing until . The application of the hybrid average ranking method and the brute force method in a scenario involving industrial plants with ambiguous data is starkly illustrated in the section that follows.
APPLICATION OF THE PROPOSED METHOD
Suppose a factory has four job supplies ( available to fulfil four demands  The amount of time (measured in hours) required to complete each job is known from previous registrations. For the ambiguous costs displayed as tri-values, one is tasked with determining the optimal paths to achieve the lowest possible value.
Using the resources in [31], the initial step to extract the required costs is documented in Table 3 below.





TABLE 3. The Supplies-Demand Costs Matrix
	No.
	
	
	
	

	
	(1,5,9)
	(3,7,11)
	(7,11,15)
	(2,6,10)

	
	(4,8,12)
	(1,5,9)
	(4,9,13)
	(2,6,10)

	
	(0,4,8)
	(3,7,11)
	(6,10,14)
	(3,7,11)

	
	(6,10,14)
	(0,4,8)
	(4,8,12)
	(-1,3,7)



Next, the average ranking procedure outlined in Equation (6) is employed to obtain the results presented in Table 4 below.

TABLE 4. The Results of the Average Ranking Process
	No.
	
	
	
	

	
	5
	7
	11
	6

	
	8
	5
	8.67
	6

	
	4
	7
	 10
	7

	
	10
	4
	8
	3



Referring to the Brute Force Method iteration in Table 2 and the corresponding crisp values in Table 4, the model is constructed using four job supplies ( and four demands the overall structure is shown in Figure 1.
 

Structure for Selection Routes of Job Supply to the Nodes of Demands
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FIGURE 1. Structure for Job Supply to Demand

Figure 1 aligns with Table 2, which indicates that the structure would have 24 paths based on the  resultant crisp supply-demand matrix in Table 4. Hence, the four routes demonstrating the lowest costs based on the mathematical computation in Equations (7)-(9) to determine the lowest overall expenses are shown in Table 5 below.

TABLE 5. Optimal Costs Using Brute Force Method
	No.
	Route
	Crisp No.
	Min. Cost

	1
	 C11, C22, C33, C44
	(5+5+10+3)
	23
22.67
23
22.67

	2
	C12, C23, C31, C44
	(7+8.67+4+3)
	

	3
	C13, C22, C31, C44
	(11+5+4+3)
	

	4
	C14, C23, C31, C42
	(6+8.75+4+4)
	



As shown by the results of the iterations obtained, a cost of ($22.67) or ($23) could be selected by the manager. Table 5 shows the efficiency of the brute force method in finding four paths from (24) routes to yield a minimal cost. The method’s flexibility in utilizing ambiguous data to discover new routes is more relevant and realistic for making informed decisions and minimizing overall costs. The results demonstrate the effectiveness of this strategy compared to other approaches, which yield only a single route.
CONCLUSION
This work presents a new method for handling assignment problems involving ambiguous costs in tri-values, combining an average ranking procedure with the brute force method. The utilization of ambiguous values suggests that these are scenarios involving values that one cannot precisely quantify, and are therefore more universal and realistic. From the numerical results obtained, the method clearly produces results with the least cost for multiple routes, which is an advantage over other approaches that result in a single route. The provision of these various routes allows for flexibility, enabling the manager to consider other qualitative factors before making a final decision. Overall, the new method in this article requires minimal rigor to comprehend and use. Thus, it can be concluded that the brute force method results are more suitable for supporting a variety of factory management options, and simulation approaches with various membership functions can employ these methods in future studies.
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