Spectral Properties of the Schrödinger Operator with 
a Compactly Supported Potential of Rank One
Zahriddin Muminov 1, 2, a) and Shukhrat Alladustov 1, 2, b)
1Department of Higher and Applied Mathematics, Tashkent State University of Economics, Tashkent, Uzbekistan.
 2Research Institute for the Development of Digital Technologies and Artificial Intelligence, Tashkent, Uzbekistan.
[bookmark: _Hlk214445028]
b) Corresponding author: sh.alladustov@gmail.com
[bookmark: _Hlk214445018]a) zimuminov@gmail.com

Abstract. Schrödinger operators of the form , , , are investigated on , the integer lattice, where  is the standard discrete Laplacian and  denotes the Kronecker delta function. Physically, these operators describe a quantum particle moving on a one-dimensional lattice, with two potential wells located at the symmetric sites  and . Depending on the sign of the coupling constant , the potential may be either attractive or repulsive. We investigate the essential and discrete spectrum of these operators. Under suitable conditions, we prove that there exists a unique eigenvalue lying outside the essential spectrum and we derive its asymptotic behavior as .
I. Introduction
The spectral properties of discrete Schrödinger operators , where  is the standard discrete Laplacian and  is a finite-rank potential depending on certain parameters, have been widely studied on integer lattices of various dimensions (see, for example, Refs. [1-4]). Particularly, in [4], a family of Schrödinger operators  was considered on , where the potential  is given by

Later, the spectrum of a similar operator on , the Hilbert space of even functions, was studied in [5]. The authors showed that eigenvalues may emerge from threshold resonances when varying interaction parameters. Schrödinger operators  that depend on two parameters were also investigated in [6] over the three-dimensional lattice . A potential function was constructed via the Dirac delta function. It was shown that threshold eigenvalues can be absorbed into the essential spectrum and they may become embedded eigenvalues at certain points of a constructed parabola. The Hamiltonian corresponding to three particles, which can be either fermions or bosons, where masses of two particles are infinite and of the last one is finite was considered in [7] over the three-dimensional lattice. When the particles interact via zero-range attractive forces, it was shown that infinitely many eigenvalues may exist. The behavior of such eigenvalues, together with the threshold eigenvalues and threshold resonances, was thoroughly studied and their dependence on the parameters was demonstrated. 
Moreover, there are several works dedicated to the study of discrete Schrödinger operators on the two-dimensional lattice, . In [8], Schrödinger-type operators of the form  was considered on . Discrete spectrum of this type of operators was explicitly described and characterization of the threshold eigenfunctions as well as threshold resonances was provided. In [9], spectrum of the generalized Friedrichs model was considered on the two-dimensional case provided the rank of the perturbation operator is one. 
Parameter-dependent Schrödinger operators with compactly supported potential functions were also investigated over the one-dimensional case in a number of papers [10] and [11]. In [10], a Schrödinger operator  was considered on , that depends on three parameters. It was shown that this operator might have zero, one, two or three eigenvalues outside the essential spectrum depending on the location of the point . In [11], the Hamiltonian corresponding to a system of two bosons and a fermion was investigated on the one-dimensional lattice, where particles interact via zero-range potentials. It was shown that the three-particle discrete Schrödinger operator can have infinitely many eigenvalues, provided the bosons involved in the considered system are of infinite mass. 
In the recent paper [12], we investigated the operators of the form , where 

It was shown that there exist eigenvalues lying to the left of the essential spectrum and their asymptotic behavior was studied as . Moreover, eigenvalues and threshold resonances were obtained for any values of  and . 
In the present work, we study the discrete Schrödinger operator  on  with potential 
. 			      (3)
which represents two symmetric interaction sites located at  and . By passing to the momentum representation, we restrict the operator to , the Hilbert space of even square-integrable functions on . Due to symmetry, the perturbation acts as a rank-one operator in momentum space. As a result, the operator may have either zero or exactly one eigenvalue depending on the sign and magnitude of . We establish the existence criterion for this eigenvalue and determine its asymptotic behavior as . The main result is formulated in Theorem 1. These rank-one perturbations model a quantum particle interacting with two symmetric localized potentials, providing a simple yet nontrivial setting for understanding how potential parameters affect spectral properties. Finding the essential spectrum and establishing the existence and asymptotic behavior of an isolated eigenvalue provides key insights in the dynamics and bound-state properties of lattice quantum systems.
The structure of the paper is as follows. Section 2 is the description of the operator in coordinate and momentum representations. Section 3 discusses the essential spectrum and the associated Fredholm determinant, proving the eigenvalue existence criterion. Section 4 establishes the asymptotic behavior of the eigenvalue for . Section 5 contains concluding remarks.
II. [bookmark: _Hlk214445378]the position and momentum representations of the operator 
The Laplacian is defined on , the Hilbert space of square-summable even functions, as (see [3])

where . With this definition, it is self-adjoint and bounded operator. Consider the discrete Schrödinger operator on  defined as 

where  and , ,  are potential functions defined as 

In the momentum representation,  can be described by the operator  that acts on , where  and   are standard Fourier transform and its inverse, respectively. With this definition, the operator  can be represented as 

where  is the multiplication operator by the function  on , i.e.,
	
The perturbation  is the integral operator of rank one, 

With this definition,  is a self-adjoint operator on . If , the potential  becomes an integral operator, , which was investigated in Refs. [13, 14]. Here, we assume .
For simplicity, hereafter, we use  and  instead of  and , respectively. 
III. Essential and discrete spectrum 
Essential Spectrum
Since  is a rank-one operator on , Weyl’s theorem implies that . By definition,  is a multiplication operator, and its spectrum is the segment . As , we have  and . Accordingly, . 
Fredholm Determinant of the Operator 
[bookmark: _Hlk214445645]For , let us define the function  as 

Lemma 1. The following statements are true. 
(1) The operator  has an eigenvalue  if and only if .
(2) If  is a simple eigenvalue of , then the corresponding eigenfunction is given as

where  is some constant.
Proof. (1) From the eigenvalue equation , we obtain , i.e., 

where . We multiply both sides by and integrate over the variable  to obtain a linear equation in the variable , 

 As , we have 

Conversely, suppose  for some . Then, the function

 satisfies the equation 

 Taking the relation  into account, we obtain 

i.e.,  is an eigenvalue of . This also proves the second statement of the lemma.
Lemma 1 allows us to investigate the zeros of the function  for the eigenvalues of the considered operators. 
Properties of the Fredholm Determinant
Recall that  is of the form 

which is well-defined for all  and is an analytic function. We investigate the left side of the essential spectrum and always assume that . For the limit of the involved integral, we have 

i.e., it is divergent. For any fixed , we also have that 

Furthermore, for fixed ,  is monotone decreasing on , and 
						(21)
If , then  is monotone increasing, and 
						(22)
In Fig. 1, we demonstrate the behavior of  for  and . 
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FIGURE 1. Plot of the function  for  and 
From the relations in Eqs. (20)-(22), we conclude that  has a unique zero,  if  and it has no zeros if . From this and Lemma 1, we obtain the following theorem.

Theorem 1. There exists a unique eigenvalue of  that lies to the left of the essential spectrum, i.e., in  if , and has no eigenvalues otherwise. 

Hereafter, we assume that , i.e.,  possesses a unique eigenvalue.
IV. Asymptotics for the eigenvalues
In this section, we study the asymptotic behavior of the eigenvalue  as . 
Let us denote  and . Then, we have that  and 

Next, we investigate the integral

 Taking the relations 

and 

into account, we derive 

Since , we have the relationship

Therefore, the following equality is satisfied,  

From these, we obtain an eigenvalue equation of the form 

Denote , then . With these, we obtain 

 Therefore,

Taking the relation  into account, we obtain 

From this, describing  as a polynomial in  and comparing the coefficients, we get 

Thus, we find a relation between the eigenvalue  and the parameter  as 

Therefore, we obtain the asymptotic relation  for small values of the parameter .
V. Conclusion
We have studied the spectral properties of the Schrödinger operators   the subspace of even square-summable sequences. In the momentum representation, the operator is unitarily equivalent to 

We showed that . It was also shown that  has a unique eigenvalue lying to the left of the essential spectrum if , while for  the operator has no discrete eigenvalues. Furthermore, we investigated the asymptotic behavior of this unique eigenvalue as . In this case, we obtained the expansion 

In particular, we obtain an asymptotic relation  as .  
The study of such models on higher-dimensional lattices is particularly important in mathematical physics. We aim to investigate the spectral properties of two- and three-dimensional lattices in our subsequent works. 
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