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Abstract. This study uses two cutting-edge methodologies, Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA), to assess and compare the technical efficiency of 27 Farmers' Organizations (Pertubuhan Peladang Kawasan, PPK) under the Muda Agricultural Development Authority (MADA) in Malaysia. Over the course of four paddy planting seasons, efficiency scores were computed, and the outcomes of both approaches were analyzed using descriptive statistics. The results show that DEA produced a greater range of scores, including fully efficient units, whereas SFA provided slightly higher and more consistent efficiency scores. In addition to the score comparisons, the PPKs were ranked according to their efficiency, and the two approaches demonstrated a relatively strong positive association, as indicated by the Spearman rank correlation coefficient (ρ = 0.7314). This implies that efficiency scores and rankings can be greatly impacted by the decision between DEA and SFA. As a result, relying solely on one approach may lead to inconsistent findings. To ensure a more accurate and unbiased assessment, a mixed approach is recommended. Notably, while both methods offer valuable insights, SFA appears to provide more reliable efficiency estimates in the presence of external factors such as weather variability and pest disturbances. According to the study's findings, DEA and SFA integration facilitates more thorough performance reviews and well-informed policy choices for organizational-level paddy production management.
INTRODUCTION
Most people in Malaysia eat rice every day, so paddy production is still an important part of the country's farming scene. To protect national food security and the economic well-being of rural areas [1], the government has long put a high priority on producing enough rice to meet all of its own needs. Furthermore, increasing the yield and efficiency of paddy farming is important in this context, especially in areas managed by agriculture development agencies like Muda Agricultural Development Authority (MADA). Farmers' Organizations, or Pertubuhan Peladang Kawasan (PPK), are important parts of this ecosystem because they organize support services and inputs to improve results at the farm level. There are still big differences in how productive and efficient PPKs are, even though a lot of money has been spent on funding, mechanization, and training. These differences make it clear that technical efficiency needs to be carefully evaluated in order to find performance gaps and come up with focused solutions. But it's not easy to figure out how to measure technical efficiency, and it often depends on the methodology that is used. 
Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) are two of the most common ways to do this. DEA is a non-parametric linear programming technique that utilizes actual data to construct an empirical efficiency frontier, illustrating the relative efficiency of different decision-making units (DMUs) [2]. SFA, on the other hand, is a parametric method that finds a stochastic production limit and tells the difference between random noise and inefficiency [3]. It's possible for both methods to give different efficiency scores and rankings, which can change the choices that managers and policymakers make [4, 5]. A lot of research has looked at agricultural performance in Malaysia using either DEA or SFA on their own [6, 7, 8], but not many have compared the two methods in the same study, especially when it comes to MADA paddy farming. It is very important to do a comparative evaluation to see how stable the results are across methods and to help stakeholders pick the right tool for a thorough performance review.
In order to address this deficiency, the purpose of this study is to evaluate and compare the technical efficiency of PPKs over the course of four planting seasons using both DEA and SFA measurements. Additionally, it illustrates the implications of methodological choice on the interpretation of results and the design of policy, as well as compares and contrasts the consistency of efficiency rankings between different approaches by using Spearman's rank correlation. The purpose of this study is to contribute to the discourse on methodology and to provide practical insights for efficiency analysis in agricultural production. This is accomplished by presenting a side-by-side comparison. The findings can be of use to agricultural planners, policymakers, and researchers in selecting the technique that is best appropriate for evaluating performance and in making decisions for the paddy sector that are based on evidence. 
RELATED WORK
DEA is a widely used non-parametric method introduced by [2] to measure the relative efficiency of decision-making units (DMUs) by constructing a frontier from observed input-output data. In the agricultural sector, DEA has been applied extensively due to its ability to handle multiple inputs and outputs without requiring a functional form [9]. In Malaysia, DEA has been employed to evaluate the performance of paddy farmers and farmers’ organizations. However, one key limitation of DEA is its sensitivity to outliers and measurement errors, as it attributes all deviations from the frontier to inefficiency. SFA, introduced by [3], is a parametric method that estimates a production frontier while accounting for statistical noise. It assumes a specific functional form (e.g., Cobb-Douglas or Translog) and decomposes the error term into inefficiency and random error. SFA has been widely used to assess farm-level efficiency in developing countries and offers the advantage of distinguishing inefficiency from external shocks. In Malaysian paddy farming, SFA has been used to evaluate the effect of technology and farm practices on productivity [6, 10]. Nevertheless, the results of SFA are highly dependent on the correctness of the model specification.
Comparative uses of DEA and SFA outside of Malaysia have taught us a lot about their methodological benefits and weaknesses. In China and India, for example, DEA has often produced higher average efficiency scores than SFA because it does not account for random noise, which can lead to overestimation [11]. On the other hand, research in European agriculture has shown that SFA's randomness gives more accurate predictions when prices and weather change [12, 13]. In Latin America, DEA is better for looking at small farms with different types of production methods because it can handle more than one output. Based on these results, DEA appears to perform better for benchmarking and comparative analysis, whereas SFA is more suitable when there are significant random shocks or measurement errors [14]. Therefore, an analysis of numerous international studies reveals that the selection between DEA and SFA is primarily based on the features of the data, the existence of stochastic noise, and the goals of the study. Combining the two methods can result in complementing viewpoints, with SFA offering information on the statistical reliability of the scores and DEA emphasising relative efficiency rankings.
methoDOlogy
This study evaluates the technical performance of the Pertubuhan Peladang Kawasan (PPK) under the Muda Agricultural Development Authority (MADA) using both SFA and DEA. The SFA method is advantageous because it separates random noise (e.g., weather shocks) from inefficiency, whereas the DEA method provides a non-parametric benchmark for performance comparison. Together, these methods provide a comprehensive view of how different PPKs compare in terms of efficiency. 
The analysis covers 27 PPKs overseen by MADA, which is responsible for paddy cultivation in Kedah and Perlis. These PPKs serve as centers for the distribution of inputs, provision of extension services, and collection of paddy. The dataset covers four planting seasons, representing both the main and off seasons during the study period. The PPKs included in the analysis are listed in Table 1.The study employs input and output variables similar to those used in other empirical studies for estimating efficiency. The output variable is the average paddy yield per season, expressed in kg/hectare. The input variables include the number of farmers, land area (in hectares), the number of bags of compound fertilizer, urea fertilizer, NPK fertilizer, and the cost of pesticides. These elements include labour, the utilization of land, and the application of chemicals, all of which are seen as being excellent indications of the degree to which paddy cultivation is technically efficient. In SFA and DEA analyses, the production function framework is commonly employed, and this study adopts the same approach, as supported by sources [1, 6, 9]. 
	TABLE 1. List of PPKs under MADA 

	PPK
	Pertubuhan Peladang Kawasan (PPK)
	PPK
	Pertubuhan Peladang Kawasan (PPK)

	A-I
	Arau
	A-III
	Hutan Kampong

	B-I
	Kayang
	B-III
	Alor Senibong

	C-I
	Kangar
	C-III
	Tajar

	D-I
	Tambun Tulang
	D-III
	Titi Haji Idris

	E-I
	Simpang Empat
	E-III
	Kobah

	A-II
	Kodiang
	F-III
	Pendang

	B-II
	Sanglang
	A-IV
	Batas Paip

	C-II
	Kerpan
	B-IV
	Pengkalan Kundur

	D-II
	Tunjang
	C-IV
	Kangkong

	E-II
	Kubang Sepat
	D-IV
	Permatang Buluh

	F-II
	Jerlun
	E-IV
	Bukit Besar

	G-II
	Jitra
	F-IV
	Sungai Limau

	H-II
	Kepala Batas
	G-IV
	Guar Chempedak

	I-II
	Kuala Sungai
	
	


DEA Model
There is a non-parametric way to measure how efficient DMUs are called Data Envelopment Analysis (DEA), which was created by Charnes, Cooper, and Rhodes [2]. Assuming Constant Returns to Scale (CRS), the CCR model indicates that efficiency increases proportionally with changes in inputs and outputs [15]. It measures General Technical Efficiency (GTE) by looking at how well each DMU matches up with the best-performing area.  The BCC model, which accommodates Variable Returns to Scale (VRS), was introduced by Banker, Charnes and Cooper [16]. This model determines whether a DMU operates optimally under conditions of increasing, constant, or declining returns to scale. In a fundamental linear programming framework, the output-oriented BCC model aims to maximize the outputs while efficiently utilizing the inputs, as well as [9]. If the efficiency number for a DMU is 1, it is efficient. If it is higher than 1, it is not efficient, but it can be normalized for benchmarking on a 0 to 1 scale. For each PPK, the BCC model chosen for output approaches the subsequent linear programming (LP) problem in the form described below:

		(1)










where  represents the input  for PPK ; denotes  the output  for PPK;  and  are the input and output of the target PPK being evaluated;  denotes the weights assigned to peer PPKs;is the total number of PPKs; is the number of inputs; and is the number of outputs.
SFA Model
A Stochastic Frontier Analysis (SFA) model, as suggested by [3] and [17], divides deviations from the production frontier into two parts: a non-negative term that denotes inefficiency and random noise that is outside the DMU's control. SFA is a parametric method that requires presumptions on the distribution of the error terms and the functional form of production.  SFA can use Maximum Likelihood Estimation (MLE) to estimate time-invariant or time-varying inefficiency when working with panel data [18]. While the parameter gamma, γ (0–1) shows the percentage of overall deviation related to inefficiency, farm-specific inefficiency quantifies the difference between observed output and the stochastic frontier, separating true inefficiency from random shocks. The connection between inputs and outputs is specified by the production function. There are two types: the Translog, which is more flexible but may have multicollinearity issues, and the Cobb-Douglas, which is straightforward but implies constant elasticities and returns to scale. Six inputs were used in this study: number of farmers, land area (in hectares), the number of bags of compound fertilizer, urea fertilizer, NPK fertilizer, and the cost of pesticides. R (Frontier package) was used to compute the technical efficiency scores for the PPKs, considering both time-varying and time-invariant effects and applying truncated-normal and half-normal distributions for the inefficiency factor. Eq. (2) presents the empirical Cobb-Douglas model that was employed before efficiency estimation.
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subscript :  the  (PPK) for  ; subscript : season of observation for ; “ln” represents the natural logarithm; : vector of unknown parameters to be estimated;  : a stochastic composite error term.  The  term corresponds to statistical noise, measurement error and other random events that are beyond the PPK’s control and it is assumed to be independently and identically distributed (i.i.d) normal random variables with zero means and variances; and the  term is a non-negative random variable associated with technical inefficiency in production and are assumed to be independently and identically distributed (i.i.d). It is further assumed that  and  is independently distributed from each other.  The technical efficiency (TE) scores for each PPK were calculated across the four planting seasons, and the average TE for each PPK was subsequently derived. The technical efficiency of the -th PPK in the -th season is defined according to the stochastic frontier model, as shown in Eq. (3).	

                                                                         	(3)



In SFA, the selection of the production function, the distributional assumptions for the inefficiency term, and the specification of time effects are determined through a series of hypothesis tests. The Likelihood Ratio (LR) test compares a simpler model () with a more complete model () to determine whether adding additional parameters significantly improves model fit, as shown in Eq. (4).


		(4)

The LR statistic is evaluated against the critical value derived from a chi-squared distribution, depending on the number of constraints (additional parameters). If the LR value exceed the crucial threshold, the null hypothesis is rejected, signifying that the more complex model offers a much improved fit. 
A LR test was performed to compare the Cobb-Douglas (null hypothesis) and Translog (alternative hypothesis) specifications for selecting a suitable production function for the SFA model. The whole Translog model, encompassing log-linear, squared, and interaction variables, could not be estimated because of multicollinearity, rendering several parameters inaccurate. A simplified Translog model was utilized, incorporating only statistically relevant squared and interaction variables. The LR statistic (8.3806) is below the 5% critical value (19.675), suggesting that the Cobb-Douglas model cannot be rejected. This endorses the selection of the Cobb-Douglas functional form as a suitable and economical representation of production technology.  





The existence of technological inefficiencies in the production process is investigated in the second test. The stochastic frontier model with inefficiency effects (alternative hypothesis) was compared to a regular production function without inefficiency effects (null hypothesis) using a LR test. The log-likelihood under  was 98.21436, whereas it rose to 134.3942 under the alternative. The null hypothesis was rejected since the resulting LR statistic (72.3597) was higher than the 5% critical value (3.841). This facilitates the application of the SFA model for production performance analysis and validates the existence of technological inefficiency. 
      In the third test, the suitability of a half-normal distribution for the inefficiency term is assessed. A half-normal distribution is assumed by the null hypothesis (), but a truncated-normal distribution is assumed by the alternative (). An LR statistic of 0.2880 was obtained by taking the log-likelihood values under  and , which were 134.3942 and 134.5382, respectively. The null hypothesis cannot be rejected because the value is below the 5% critical limit (3.841, df = 1), indicating that the inefficiency term is adequately represented by the half-normal distribution.       
The last test looks at the time-invariance (null hypothesis) of inefficiency effects. The null hypothesis is rejected because the LR statistic (40.2256) exceeds the 5% critical value (3.841, df = 1). The adoption of a time-varying SFA model to describe dynamic changes in producer performance over the observed periods is supported by the fact that inefficiency fluctuates over time. The chosen time-varying SFA model was then used to estimate the technical efficiency (TE) values for each PPK in light of the findings of these hypothesis tests. Once statistical noise and time-related fluctuations are taken into consideration, these estimated TE scores offer information about the producers' relative performance. In order to assess consistency, identify performance gaps, and draw attention to methodological distinctions between the two frontier methods, the efficiency scores derived from the DEA model and those derived from SFA are thoroughly compared in the section that follows.
Results and discussion
The technical efficiency scores for the 27 PPKs under MADA, calculated using DEA and SFA, are summarized in Table 2. On average, PPKs appear to be more efficient under the SFA framework, as shown by its mean and median scores (0.9170 and 0.9323, respectively), which are slightly higher than those from the DEA model (0.8916 and 0.9085). PPKs with scores close to 1.000 may be considered highly efficient, even though 1.000 represents full technical efficiency. 

	TABLE 2. Efficiency score by DEA and SFA models

	PPK
	Season

	
	1
	2
	3
	4

	
	DEA
	SFA
	DEA
	SFA
	DEA
	SFA
	DEA
	SFA

	A-I
	1.0000
	0.8638
	1.0000
	0.9116
	1.0000
	0.9433
	1.0000
	0.9638

	B-I
	0.8638
	0.8362
	0.8751
	0.8931
	0.8450
	0.9311
	0.9879
	0.9560

	C-I
	1.0000
	0.8587
	1.0000
	0.9082
	1.0000
	0.9410
	1.0000
	0.9624

	D-I
	0.9086
	0.8687
	0.8886
	0.9149
	0.9041
	0.9454
	0.9307
	0.9652

	E-I
	0.7999
	0.8726
	0.9348
	0.9175
	0.9024
	0.9471
	0.9208
	0.9663

	A-II
	0.9041
	0.8842
	0.8549
	0.9251
	0.8864
	0.9520
	0.8860
	0.9695

	B-II
	0.7979
	0.8181
	0.8375
	0.8809
	0.9005
	0.9231
	0.8790
	0.9507

	C-II
	0.9064
	0.9554
	0.9721
	0.9715
	0.9220
	0.9819
	0.9799
	0.9885

	D-II
	0.7682
	0.8212
	0.8351
	0.8830
	0.8481
	0.9245
	0.8962
	0.9517

	E-II
	1.0000
	0.9659
	0.9538
	0.9783
	0.8703
	0.9862
	0.9666
	0.9913

	F-II
	0.9815
	0.9645
	0.9590
	0.9774
	0.8971
	0.9857
	0.9536
	0.9909

	G-II
	0.7935
	0.7756
	0.7736
	0.8518
	0.9111
	0.9037
	0.8039
	0.9381

	H-II
	0.8915
	0.8836
	0.8757
	0.9248
	0.8521
	0.9518
	0.8691
	0.9693

	I-II
	0.8469
	0.9188
	0.9401
	0.9478
	0.9225
	0.9667
	0.9046
	0.9788

	A-III
	0.8058
	0.8856
	0.9540
	0.9261
	0.9295
	0.9526
	0.7842
	0.9698

	B-III
	0.6975
	0.7069
	0.8121
	0.8033
	0.8192
	0.8710
	0.7436
	0.9165

	C-III
	0.7968
	0.8353
	0.9790
	0.8925
	0.8904
	0.9307
	0.9164
	0.9557

	D-III
	0.5174
	0.5776
	0.7909
	0.7073
	0.7159
	0.8037
	0.6603
	0.8713

	E-III
	0.7148
	0.7183
	0.8565
	0.8115
	0.8344
	0.8765
	0.9102
	0.9202

	F-III
	0.8982
	0.9316
	0.9655
	0.9561
	0.9079
	0.9721
	0.9109
	0.9823

	A-IV
	0.8839
	0.8582
	0.9031
	0.9079
	0.8863
	0.9408
	0.9576
	0.9622

	B-IV
	1.0000
	0.9262
	1.0000
	0.9527
	1.0000
	0.9698
	0.9388
	0.9808

	C-IV
	0.8753
	0.9416
	0.9320
	0.9626
	0.9064
	0.9762
	1.0000
	0.9849

	D-IV
	0.8512
	0.8859
	0.9237
	0.9263
	0.8656
	0.9528
	0.9064
	0.9699

	E-IV
	0.9104
	0.9269
	0.9508
	0.9531
	0.9125
	0.9701
	1.0000
	0.9810

	F-IV
	0.8160
	0.8876
	0.9756
	0.9274
	0.9328
	0.9535
	0.9632
	0.9704

	G-IV
	0.7799
	0.8260
	0.8787
	0.8863
	0.8686
	0.9266
	0.8626
	0.9530

	   Average
	0.8522
	0.8591
	0.9119
	0.9074
	0.8937
	0.9400
	0.9086
	0.9615



The relatively higher scores under SFA may be attributed to its ability to distinguish true inefficiency from statistical noise, such as weather variations or external disturbances; thereby providing a more reliable evaluation. In contrast, DEA, being deterministic, attributes all deviations from the frontier to inefficiency, which may penalize units affected by factors beyond their control. In terms of score distribution, the DEA model displays greater variability, reflected by a wider standard deviation (0.0788) and a lower minimum score (0.5175), indicating higher heterogeneity among PPKs. Meanwhile, SFA results are more consistent, as shown by a lower standard deviation (0.0530) and a higher minimum score (0.5776). DEA also identified fully efficient units (score = 1.0000), whereas the highest efficiency score under SFA was 0.9913, as this stochastic model typically avoids perfect scores. 
In summary, SFA provides higher average efficiency and greater consistency across PPKs, while DEA highlights more variation and identifies best-performing units. Mean SFA efficiency increased from 0.8591 to 0.9615, whereas mean DEA efficiency rose from 0.8522 to 0.9086, indicating steady improvements in production efficiency and reduced technical inefficiency over time. Some PPKs (e.g., A-I, C-I, B-IV) consistently achieved DEA scores of 1.0000, reflecting best-practice performance, while others (e.g., D-III, B-III) showed lower scores, suggesting potential for improved resource utilization and technology adoption. The convergence of DEA and SFA scores in later seasons implies that management efficiency became the main driver of performance, with stochastic effects gradually diminishing. These seasonal patterns underscore the importance of accounting for temporal factors such as weather, learning effects, and input allocation in efficiency assessment.
Table 3 presents the rankings of PPKs based on DEA and SFA. While some rankings are consistent, the observed differences indicate that each method captures distinct aspects of efficiency. The Spearman correlation (ρ = 0.7314) suggests reasonable agreement, but relying on a single method may lead to a distorted assessment of performance. DEA provides flexible, non-parametric estimates of efficiency, whereas SFA accounts for stochastic shocks. Combining both approaches offers a more robust evaluation, supporting targeted interventions and optimal resource allocation to enhance paddy production.

	TABLE 3. Rankings of PPKs using DEA and SFA

	PPK
	Rank DEA
	Rank SFA
	PPK
	Rank DEA
	Rank SFA

	A-I
	1
	16
	A-III
	20
	11

	B-I
	15
	19
	B-III
	26
	26

	C-I
	2
	17
	C-III
	14
	20

	D-I
	11
	15
	D-III
	27
	27

	E-I
	16
	14
	E-III
	24
	25

	A-II
	18
	12
	F-III
	10
	5

	B-II
	21
	23
	A-IV
	12
	18

	C-II
	6
	3
	B-IV
	3
	7

	D-II
	23
	22
	C-IV
	8
	4

	E-II
	5
	1
	D-IV
	17
	10

	F-II
	4
	2
	E-IV
	7
	6

	G-II
	25
	24
	F-IV
	9
	9

	H-II
	19
	13
	G-IV
	22
	21

	I-II
	13
	8
	
	
	


CONCLUSION
DEA and SFA, two frontier techniques, were used in this study to assess and compare the technical efficiency of 27 MADA Farmers’ Organizations (PPKs). The SFA model generated marginally higher average and median efficiency scores than the DEA model, according to the first comparison, which was based on descriptive statistics. However, SFA produced more consistent results because it could adjust for statistical noise, but DEA showed a wider range of scores, including fully efficient units. In the second comparison, PPKs were ranked according to their respective efficiency scores. Despite certain methodological discrepancies, the Spearman's rank correlation coefficient of 0.7314 indicated a relatively strong positive association and suggested that both approaches generally agree on the relative efficiency rankings of PPKs. The observed differences between DEA and SFA highlight that depend on on a single method may result in incomplete or inconsistent assessments. DEA is flexible and useful for benchmarking and identifying best-performing units without assuming a functional form, but it does not account for external shocks such as weather, pests, or irrigation variability. In contrast, SFA separates inefficiency from such random disturbances, providing statistically robust estimates suitable for policy analysis and long-term strategic planning.
For policymakers like MADA, using both methods complementarily can offer a more comprehensive understanding of performance variation. DEA can identify benchmark PPKs and highlight extreme efficiency levels, while SFA can account for environmental and operational uncertainties to prevent misclassification of inefficiency. This dual-method approach enables better-targeted interventions, resource allocation, and informed decision-making to enhance productivity and sustainability in Malaysia’s paddy sector. Limitations of this study include model restrictions such as multicollinearity in the Translog specification and assumptions underlying the SFA model, which may affect generalizability. Future studies may further enhance this framework by incorporating advanced techniques, such as copula-based SFA models, to allow more flexible and realistic representations of the joint distribution of inefficiency and external shocks, or by integrating other frontier approaches for more robust policy guidance.
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