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Abstract. The paper considers the problems of free and forced oscillations of hereditarily deformable systems with one 

degree of freedom. The solutions of the dynamic problem of free and forced oscillations are qualitatively investigated. 

INTRODUCTION 

The problem of oscillations of hereditarily deformable systems with a finite degree of freedom by the method of 

orthogonal transformations can be reduced to a number of problems about oscillations with one degree of freedom. 

To do this, we qualitatively investigate solutions of free oscillations of hereditarily deformable systems with one 

degree of freedom. 

The solution of free oscillations of hereditarily deformable systems with one degree of freedom under arbitrary 

initial conditions has the form: 

𝑧(𝑡) = 𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡)      (1) 

where 

𝑦1(𝑡) = 𝑠𝑖𝑛 𝜔 𝑡 + 𝑠𝜑(𝑡); 𝑦2(𝑡) = 𝑐𝑜𝑠 𝜔 𝑡 + 𝑐𝜑(𝑡).        (2) 

Here, both ( )s t  and ( )с t  the sine and cosine functions are of fractional order [1-5]. Using functions (2), 

new mechanical effects of the general formulation of the problem can be described. It is clear from (1) that if functions 

sin t  and cos t  describe vibrations of elastic systems, then from (1), (2) it can be seen that functions ( )s t  

and ( )с t  describe the law of internal friction of the system, and from (2) it follows that these functions, together 

with functions, ( )s t  and ( )с t  describe free vibrations of viscoelastic systems. In particular, under the initial 

conditions 𝑧(0) = 𝑇0 = с2, 𝑧̇(0) = 0 of (2), we have 

𝑧(𝑡) = 𝑇0 𝑐𝑜𝑠 𝜔 𝑡 + 𝑇0с𝜑(𝑡).                                               (3) 

It can be seen from the solution that, according to law (3), free oscillations of viscoelastic systems occur near the 

curve expressed by the second term of solution (3), i.e. 0 ( )T с t . Thus, the following asymptotic representations of 

the solution for an arbitrary relaxation core show that the function ( )с t  over time leads to an asymptotic tendency 

of the solution to zero [1] and allows us to clearly describe the complete qualitative picture of the phenomenon under 

study and the law of variation of internal friction of systems over time during oscillatory processes of viscoelastic 

systems [6-12]. 

MAIN PART AND RESULTS 

Let's start with qualitative studies of solution (3), i.e., the solution related to free oscillations of viscoelastic 

systems. If the nature of the free oscillations of the system is known, then it is possible to judge its inherent internal 
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properties that manifest themselves under the influence of external disturbances [1]. To do this, it is necessary to study 

the properties of the function  ( )с t , knowing which, it is not difficult to study the function ( )s t , since [13]: 

𝑦1(𝑡) = 𝑠𝑖𝑛 𝜔 𝑡 + 𝑠𝜑(𝑡) = 𝜔 ∫ [𝑐𝑜𝑠 𝜔 𝑡 + с𝜑(𝑡)]𝑑𝑡 = 𝜔 ∫ 𝑦2(𝜏)
𝜏

0

𝑡

0
,             (4) 

where 

2 ( ) cos ( ),y t t с t = +  

с𝜑(𝑡) = ∑ (−1)𝑘 (𝜔 √𝑐𝑘(𝑡)2𝑘 )2𝑘

(2𝑘)!
; 𝑐𝑘(𝑡) = ∫ (1 − 𝑠)2𝑘𝐿𝑘

` (𝑡𝑠)𝑑𝑠;
1

0
∞
𝑘=1          (5) 

𝐿′(𝑘𝑠) = ∑ (−1)𝑖𝑐𝑖
𝑘𝜙𝑖

`(𝑡𝑠); 𝜙𝑖
′(𝑡𝑠)𝑘

𝑖=1 = ∫ 𝑅(𝑡𝑠 − 𝜏)𝜙𝑖
`(𝑡𝜏)𝑑𝜏

𝑡𝑠

0
. 

First of all, it can be seen from (5) that (0) 0с = , since from the expression for ( )kC t , having integrated in 

parts, we have 

𝐶𝑘(𝑡) = −1 + 2𝑘 ∫ (1 − 𝑆)2𝑘−1𝐿𝑘(𝑡𝑠)𝑑𝑠 = −1 + 𝑃𝑘(𝑡)
1

0
;                              (6) 

𝐿𝑘(𝑡) = 𝐿𝑜 − ∑ ∫ 𝑅(𝑡 − 𝜏)𝐿𝑖(𝜏)𝑎𝜏, 𝐿𝑜 = 1.
𝑡

0
𝑘−1
𝑖=𝑜   (7) 

According to (6), the function ( )с t  takes the form 

с𝜑(𝑡) = −𝑐𝑜𝑠 𝜔 𝑡 + ∑ (−1)𝑘
(𝜔𝑡)!

2𝑘!

∞
𝑘=𝑜 𝑃𝑘(𝑡). 

Moreover, the function )(tРk  satisfies the following conditions [14,15]: 

1. 𝑃𝑘(0) = 1; 

2. 0 < 𝑃𝑘(𝑡) < 1  for any finite k and t; 

3. 𝑙𝑖𝑚
𝑘→∞

𝑃𝑘(𝑡) = 0 under any circumstances 0 

4. 𝑙𝑖𝑚
𝑡→∞

𝑃𝑘(𝑡) ≤ 𝛼0
𝑘, 0 < 𝛼0 < 1 

As is known [3,6], the relaxation 𝑅⃗ (𝑡) = 1 − ∫ 𝑅(𝜏)𝑑𝜏
𝑡

0
 function has the following properties: 

1) the function 𝑅⃗ (𝑡) is defined for all  0t , 

2) 𝑅⃗ (𝑡) it is not negative when 0t , 

3) 𝑅⃗ (𝑡) a monotonically decreasing function tending to  𝑡 → ∞ a certain limit 0 , and 0 < 𝛼0 < 1.  

Using these properties of the function )(tR


 and the recurrent formulas (7), it is not difficult to obtain 

𝐿𝑘(0) = 1; 𝐿𝑘(𝑡) ≥ 0; 𝐿𝑘(𝑡) ≤ [𝑅⃗ (𝑡)]
𝑘
; 𝑙𝑖𝑚
𝑡→∞

𝐿𝑘(𝑡) = 𝛼0
𝑘 < 𝛼.       (8) 

The first two conditions (8) are obvious; let us show the validity of the last two conditions. Bearing in mind the 

monotony of the po function )( −tR  by −t  and continuity )(tLk , from the recurrence relations (7) we 

obtain 

𝐿𝑘(𝑡) = 𝐿𝑘−1(𝑡) − 𝐿𝑘−1(𝜉)∫ 𝑅(𝜏)𝑑𝜏, 0 <
𝑡

𝑜

𝜉 ≤ 𝜏. 

or 

𝐿𝑘(𝑡) = 𝐿𝑘−1(𝑡)[1 − 𝛽𝑘−1(𝑡, 𝜉)]∫ 𝑅(𝜏)𝑑𝜏,
𝑡

𝑜

 

where 𝛽𝑘−1(𝑡, 𝜉) = 𝐿𝑘−1(𝜉)/𝐿𝑘−1(𝑡) ≥ 1. Therefore, 

𝐿𝑘(𝑡) ≤ [𝑅⃗ (𝑡)]
𝑘
, 𝑘 = 1,2. ..                                        (10) 

Moving on to the limit at t→∞ and using the third property of the function )(tR


, we will verify the validity of 

all conditions (8). 

It remains to prove the validity of condition (9) for the function 

𝑃𝑘(𝑡) = 2𝑘 ∫ (𝑡 − 𝑠)2𝑘−11

0
𝐿𝑘(𝑡 − 𝑠)𝑑𝑠. 

It follows from (10) that 

𝑃𝑘(𝑡) ≤ 2𝑘 ∫ (𝑡 − 𝑠)2𝑘−11

0
[𝑅̄(𝑡 − 𝑠)]𝑘𝑑𝑠 ≤ [𝑅⃗ (𝑡)]𝑘. 

If we use the properties of the function 𝑅̄(𝑡), then by making the limit transition at k →  and ,t →  we 

obtain all the conditions (8). 



Thus, the proposed approach makes it possible to construct an exact analytical solution of the integro-differential 

equations of dynamic problems of the linear theory of hereditarily deformable systems in all existing weakly singular 

kernels of heredity in the form of a convergent fractional power series. It should be noted that solutions (3), together 

with conditions (8) and (9), contain the necessary information to understand the qualitative nature of time changes in 

elastic and viscoelastic solutions and the laws of internal friction of dynamic problems of hereditarily deformable 

systems [17]. 

In fact, the first terms of the solution (3) contain well-studied information only about elastic solutions, the second 

term is the law of internal friction of a material and viscoelastic solutions to problems. It follows from the presented 

function in the form of (5) and the validity of condition (9) that the function ( )с t , describing the law of change of 

internal friction during free oscillations of viscoelastic systems oscillates over time with a slowly increasing amplitude 

located opposite the phase of the function сos t  and a slight shift in the oscillation frequency, i.e. 

𝑙𝑖𝑚
𝑡→∞

𝜔1 = 𝜔, 𝑙𝑖𝑚
𝑡→∞

с𝜑(𝑡) = −𝑐𝑜𝑠 𝜔 𝑡.              (11) 

Qualitative patterns are observed for the law of time variation of the function )(2 ty . 

Calculations based on the addition theorem )(2 tty n +  and formulas 

𝐴0 =
𝛥𝑡

2
; 𝐴𝑗 = 𝛥𝑡; 𝑗 = 1, 𝑛 − 1; 𝐵0 =

(𝛥𝑡)𝛼

2
; 𝐵𝑘 =

(𝛥𝑡)𝛼

2
[(𝑘 + 1)𝛼 − (𝑘 − 1)]; 

where, 𝑘 = 1, 𝑗 − 1; 𝐵𝑗 =
(𝛥𝑡)𝛼

2
[𝑗𝛼 − (𝑗 − 1)𝛼]; 𝑘 = 𝑗, they confirm the validity of the high-quality paintings 

shown in the drawing. 

 

 

FIGURE 1. The law of time variation of the function )(2 ty . 

 

Similar qualitative pictures can be obtained for the function 𝑦1(𝑡) = 𝑠𝑖𝑛 𝜔 𝑡 + 𝑠𝜑(𝑡), and conditions (8) and (9) 

will be valid for the function ( )s t , since [1, 17, 18] 

𝑦2(𝑡) = 𝜔 ∫ 𝑦1(𝜏)𝑑𝜏
𝑡

0
.                              (14) 

The limit transition (11) for this case takes the form: 

𝑙𝑖𝑚
𝑡→∞

𝜔1 = 𝜔, 𝑙𝑖𝑚
𝑡→∞

𝑠𝜑(𝑡) = − 𝑠𝑖𝑛 𝜔 𝑡.   (15) 

The law of time variation of a function )(1 ty  is characterized by the following qualitative patterns. And in this 

case, calculations based on the addition theorem )(1 tty n +  and formulas 

𝑦1𝑛 = 𝑡𝑛 − 𝜔2 ∑ 𝐴𝑗(𝑡𝑛 − 𝑡𝑗)

𝑛−1

𝑗=0

[𝑦1𝑗 −
𝜀

𝛼
∑ 𝐵𝑘

𝑗

𝑘=0

𝑒−𝛽𝑡𝑗𝑦2𝑗−𝑘] 

where 



𝐴0 =
𝛥𝑡

2
; 𝐴𝑗 = 𝛥𝑡; 𝑗 = 1, 𝑛 − 1; 𝐵0 =

(𝛥𝑡)𝛼

2
; 𝐵𝑘 =

(𝛥𝑡)𝛼

2
[(𝑘 + 1)𝛼 − (𝑘 − 1)]; 

𝑘 = 1, 𝑗 − 1; 𝐵𝑗 =
(𝛥𝑡)𝛼

2
[𝑗𝛼 − (𝑗 − 1)𝛼]; 𝑘 = 𝑗, 

the validity of high-quality paintings has been fully confirmed. 

Thus, taking into account the inherently deformable properties of the structural material lead to attenuation of free 

vibrations, while the attenuation rate significantly depends on the singularity parameter [19].  

The smaller the singularity parameter of the structural material, the higher the rate of attenuation of natural 

vibrations. 

 

FIGURE 2. The law of time variation of the function 1( )y t  

 

We turn to qualitative research on the solution of forced oscillations of hereditarily deformable systems with one 

degree of freedom. 

As is known, the general integral of an inhomogeneous integro-differential equation (IDE) is the sum of the general 

solution of the corresponding homogeneous IDE and the particular solution of the inhomogeneous IDE under 

consideration [20]: 

( ) ( ) ( )oд неодz t z t z t= + ,                                   (16) 

where 

1 1 2 2( ) ( ) ( ),одz t c y t c y t= +                                 (17) 

1

1
( ) ( )

t

неод

o

z F y t d  


= − .                       (18) 

From the above studies, it is clear that the solution of a homogeneous IDE in the presence of internal friction is 

rapidly decaying, therefore, only a partial solution of zn, which determines the forced fluctuations of the problem, is 

of practical interest. 

Let us consider a solution in the case of forced oscillations under trivial initial conditions 021 == cc . Then 

from (16) and (18), after some simple transformations, we obtain [1,6]: 

𝑧(𝑡) =
1

𝜔2 [
𝑑

𝑑𝜏
∫ 𝑃(𝑡 − 𝜏)𝐹(𝜏)𝑑𝜏

𝜏

0
− 𝐹(0)

𝑑

𝑑𝜏
∫ 𝑃(𝑡 − 𝜏)𝑦2(𝜏)𝑑𝜏 − ∫ 𝐹̇(𝑡 − 𝜏)

𝑑

𝑑𝜏
∫ 𝑃(𝜏 − 𝑠)𝑦2(𝑠)𝑑𝑠

𝜏

0

𝑡

0

𝑡

0
] 𝑑𝜏,    (19) 

where 𝑃(𝑡) = 1 + ∫ Г(𝜏)𝑑𝜏
𝑡

0
 - creep function. 

In expression (19), the first term is the displacement caused by the force F(t) under its static action, the second is 

free fluctuations from the starting point as a result of a sudden applied force, and the third term is a dynamic correction 

caused by changes in the acting force overtime [21]. 



The exact solution of (19) makes it possible to detect a number of new mechanical effects that cannot be determined 

by any numerical or approximate analytical methods. 

Let's assume that the system is exposed to an external intensity −= 0)( qtF const. Then solution (19) takes the 

form 

𝑧̄(𝑡) = 𝑃(𝑡) −
𝑑

𝑑𝑡
∫ 𝑃(𝑡 − 𝜏)𝑦2(𝜏)𝑑𝜏, 𝑧̄(𝑡) =

𝜔2𝑧(𝑡)

𝑞0

𝑡

0
.   (20) 

It follows from (3) that the second term in (20) describes a symmetrical decaying oscillatory process. Therefore, 

it is easy to see from (20) that vibrations of viscoelastic systems under the influence of constant external load pass 

near the curve of the creep function and attenuate over time along this curve [22]. 

 
FIGURE 3. Vibrations of viscoelastic systems under constant external load 

ANALYSIS OF THE RESULTS 

To confirm the validity of qualitative solutions, we present a numerical solution of the IDE of the form 

𝑧̈(𝑡) + 𝜔2(1 − 𝑅 ∗)𝑧(𝑡) = 𝐹(𝑡),                           (21) 

under initial conditions 

𝑧(𝑜) = 0, 𝑧̇(𝑜) = 0,                                       (22) 

for a specific relaxation core 

𝑅(𝑡 − 𝜏) = 𝜀е−𝛽(𝑡−𝜏)(𝑡 − 𝜏)𝛼−1 

and the source data 
2

0 2,2,05.0,125.0,1.0  ===== q . 

The solution of IDE (21) under initial conditions (22) by a method based on the exclusion of weakly singular 

singularities of integral and IDE [1] has the form 

𝑧𝑛 = ∑ 𝐴𝑗(𝑡𝑛 − 𝑡𝑗) [𝐹𝑗 − 𝜔2(𝑧𝑗 −
𝜀

𝛼
∑ 𝐵𝑘

𝑗
𝑘=0 е−𝛽𝑡𝑘𝑧𝑗−𝑘)]

𝑛−1
𝑗=0 𝑛 = 1,2, . ..,                    (23) 

In particular, oqtF =)(  

1
2

0

0 0

( ) ( )k

jn
t

n j n j j k j k

j k

z A t t q z B е z





−
−

−

= =

 
= − − − 

 
  .                  (24) 

If the initial conditions for IDE (21) are set as 

𝑧(0) = 0, 𝑧̇(0) = 1,                                  (25) 

then 

1
2

0

0 0

( ) ( )k

jn
t

n n j n j j k j k

j k

z t A t t q z B е z





−
−

−

= =

 
= + − − − 

 
  .                        (26) 



Finally, if the initial conditions for IDE (21) are given as 

𝑧(𝑜) = 1, 𝑧̇(𝑜) = 0,                                      (27) 

then 

1
2

0

0 0

1 ( ) ( ) ,k

jn
t

n j n j j k j k

j k

z A t t q z B е z





−
−

−

= =

 
= + − − − 

 
      (28) 

where 

0

( )
; ; 1, 1; ; ( ) ;

2
j n n n

t
A A t j n t n t z t z


= =  = − =  =  

  ;1,1;)1()1(
2

)(
;

2

)(
0 −=−−+== jkkk

t
B

t
B k


 

 

  jk jj
t

B j =−−= ;)1(
2

)( 
 . 

The numerical calculation results based on the addition theorem are shown in the figure (dashed lines), and 

according to algorithm (24) (dashed dotted lines).  It can be seen that numerical calculations fully confirm the 

qualitative analysis of the solution (20). 

Thus, the proposed approach allows not only to construct elementary calculation formulas for the desired solutions, 

but also to conduct a complete qualitative and quantitative analysis of natural and forced vibrations, which is very 

important for engineers when performing dynamic calculations of elements of thin-walled structures made of 

hereditarily deformable material. 

Let us focus on solving equation (21) under initial conditions (25) and (27). In the ideally elastic case for F(t)=q-

const, the corresponding solution has the form 

2

1
( ) sin (1 cos )уп

q
z t t t 

 
= + − ;    (29) 

2
( ) cos (1 cos )уп

q
z t t t 


= + − .    (30) 

Let us graphically study the results of numerical calculation using formulas (26) and (28). A comparative analysis 

of the IDE solution (21), with exact solutions (29) and (30) corresponding to an ideally elastic problem, confirms that 

algorithms (26) and (28) give high accuracy in solving both an ideally elastic problem and a viscoelastic formulation 

of the problem. 

 
FIGURE 4. Qualitative analysis of elastic and viscoelastic vibrations 

CONCLUSIONS 

1. Taking into account the inherently deformable properties of the structural material lead to attenuation of free 

vibrations, while the attenuation rate significantly depends on the singularity parameter. The smaller the singularity 

parameter of the structural material, the higher the rate of attenuation of natural vibrations. 



2. Vibrations of viscoelastic systems under the influence of constant external load pass near the curve of the creep 

function and fade over time along this curve. 
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