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Abstract. This article presents the parallel operation of a doubly fed induction generator (DFIG) with an electrical grid
under varying wind and water flow velocities, as well as vector control methods. Attention is paid to the stability of the
electrical system and the safety of generators when connected to the grid. Assuming that the stator current in no-load mode
is zero, idas=iqs=0, the voltage equation and the current relationship equation for two-pole asynchronous generators are
presented. Mathematical models of two-pole asynchronous generators in no-load mode are presented. The equation shows
the relationship between the rotor axis current component and the target stator load voltage Us. Formulas for calculating
the reactive power and rotor winding losses of a DFIG operating in no-load mode are presented. A block diagram of the
control strategy and vector control for the DFIG motion in no-load mode is presented. A PI controller is calculated for a
first-order system. As an example, the speed control of a grid-connected DFIG is considered, and an internal current
controller and an external speed controller are developed. In both cases, PI controllers are used, the parameters of which
are developed using EMF theory and the pole placement method, respectively. A block diagram of the closed-loop control
system for speed control is presented.

INTRODUCTION

In order to parallel the generators to the power supply system, it is usually required that the generators are in
normal operation. In this case, the connection to the grid directly affects the stability of the power system, as well as
the safety of the generators[1-5].

The process of connecting induction generators to the grid, which are powered by two times the constant frequency
with variable wind and water parameters, is significantly different from that of synchronous and conventional
asynchronous generators driven by DC. Synchronous or conventional asynchronous generators driven by DC have a
rigid connection to the power system. For synchronous generators, the generator output frequency is completely
dependent on the speed of the prime mover. Before connecting to the grid, the generator must be strictly synchronized.
After the generator is connected to the grid, its speed must be kept constant. Otherwise, the frequency at the generator
output will change[6]. On the other hand, asynchronous generators have lower requirements for the accuracy of speed
adjustment. There is no oscillation or desynchronization phenomenon after grid connection. Doubly-fed induction
generators use a grid connection method similar to ordinary synchronous generators, that is, the generator that has
already been started is connected to the grid after the grid connection conditions are met. DFIG s, due to their adaptive
connection to the power system, have separated the stator voltage frequency and rotor speed, which ensures grid
connection under variable speed conditions[7]. Therefore, before grid connection, the excitation power source on the
rotor side of the DFIG adjusts the excitation current according to the grid voltage and generator speed, and thus adjusts
the amplitude, frequency and phase of the generator output voltage to adapt to the grid no-load operation of the DFIG.
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EXPERIMENTAL RESEARCH

In the operating area diagram of the wind turbine generator set, OA and AB represent the startup phase. In segment
OA, the doubly-fed induction generator operates under no-load conditions and is controlled for grid connection; in
segment AB, after successful grid connection, the doubly-fed generator control strategy switches from grid connection
control to normal power generation control mode[8-12]. The control objective of the doubly-fed induction generator
operating under no-load conditions is the same as that of independent operation, which is to control the stator voltage.

The differences are:

1. The doubly-fed induction generator operating under no-load conditions outputs a grid-connected voltage on the
stator side that meets the grid connection conditions, i.e., outputs a stator voltage with the same frequency, amplitude,
and phase as the grid voltage. In independent operation, the stator voltage does not need to track a specific voltage[13];

2. During no-load operation, the stator current of the doubly-fed induction generator is 0, which simplifies the
generator model. Under no-load operation, the stator current is zero, igs=iqs=0, under this condition, the voltage
equation and flux linkage equation of the doubly-fed induction generator simplify to[14-16]:
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Still oriented the stator flux linkage on the d-axis, wgs= 0 and was= s, o= 0 according to equation (1), to
achieve stator flux linkage coinciding with the d-axis, control iy to be 0, then the command value of the rotor g-axis
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Wds=s, according to equation (1), we get
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Equation (4) shows that during no-load operation, the generator's excitation current is entirely provided by
the rotor d-axis current component[17-20].
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FIGURE 1. Mathematical Model of Doubly Fed Induction Generator in No-Load Operation

Therefore, the voltage equation in Equation (2) can be simplified to.
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From the stator voltage part of equation (5), it can be seen that when the doubly fed induction generator in no-load
operation reaches steady state, ugs =0, ugs=w1¥s = Us, realizing the orientation of the stator side no-load voltage on the

g-axis.
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FIGURE 2. Control block diagram of doubly-fed induction generator under no-load operation
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FIGURE 3. Block diagram of excitation vector control strategy for doubly-fed induction generator under no-load operation



The relationship between the rotor d-axis current component and the control target stator side no-load voltage Us
is shown in equation (4) [21-22]. Therefore, the mathematical model of the doubly fed induction generator in no-load
operation is shown in Figure 1.

The doubly-fed induction generator (DFIG) operating under no-load conditions provides excitation reactive power
and a small amount of rotor winding losses. The control objective is the stator-side no-load voltage. To track the grid
voltage, the grid voltage vector magnitude U, is used as the control objective value for the outer voltage loop. The
excitation control block diagram of the rotor-side converter during no-load operation is shown in Figure 2. Figure 3
shows the excitation vector control strategy block diagram of the DFIG during no-load operation[23-24].

This section takes the speed mode control of a grid-connected doubly-fed induction generator as an example and
designs an inner current controller and an outer speed controller. Both the inner current controller and the outer speed
controller adopt PI controllers, and the parameters of the PI controllers are designed using IMC theory and pole
placement, respectively[25-29].

The current closed-loop control system based on internal model control (IMC) theory exhibits good tracking
performance and anti-interference capability. For a first-order system, the controller is a PI controller.

Baseline model of the controlled object
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Where F(s) is a first-order filter, /'(s)=1/(zs+1), and t is the filter parameter. The transfer function of
the PI controller is expressed as
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Comparing equations (8) and (9), we obtain the proportional gain and integral gain of the current inner-loop
PI controller.

oL,

K, = .
R

K, =~ (10)
T

As can be seen from equation (10), a reasonable PI parameter can be obtained by adjusting only one filter
parameter, and the relationship between the filter parameter and the dynamic steady-state performance and robust
stability performance of the system is clear.
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FIGURE 4. Block diagram of the closed-loop control system for speed mode control



The speed outer loop controller adopts a PI controller with parameter 4 introduced. The inner loop command
value of the current output by the speed outer loop controller is expressed as follows:

i, =K, (bo) —0,)+ K, [ (0 —,)dt (11)

Where K, and K5 are the proportional gain and integral gain of the speed outer loop controller, respectively.
Figure 4 is a block diagram of the closed-loop control system under speed mode control. The current inner loop
has a very fast response speed, equivalent to a small inertial element 1/(st+1).

RESEARCH RESULTS

Based on the closed-loop control system block diagram, consider the transfer function relationship of the
closed-loop output speed @ * of the doubly-fed generator under the simultaneous action of the reference input speed
signal o and the input mechanical torque 7i:
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The closed-loop control system is a third-order system. The controller PI parameters are tuned using the state
pole placement method.

Optimizing the closed-loop poles can effectively improve the system's dynamic performance. For higher-
order systems, dynamic performance indicators are primarily determined by the dominant closed-loop poles. System
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Simultaneously, the closed-loop non-dominant pole is selected:
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In equations (13) and (14),
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Where {; and w; are the desired damping ratio and natural oscillation frequency, respectively.

The value of n determines the location of the non-dominant closed-loop poles in the complex plane. The
larger n is, the closer the response characteristics of the third-order system determined by the three poles (s3, s2, and
s1) are to those of the second-order system determined by the dominant pole. Typically, n is taken as n = 5—10.

The characteristic equation of the third-order system determined by 1s, 2s, and 3s is:
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Comparing equations (15) and (18), the PI coefficient is obtained as follows:
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Wherein, n, {;, @, T and 1, satisfy the following relationship:
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Subsequent simulation studies show that although {; takes a value greater than 1, the system still has overshoot
due to the influence of the zero point introduced by the PI controller. Therefore, a coefficient b is introduced into the
PI controller. As shown in equation (13), the b parameter allows the zero point position to be set independently. In
particular, setting b to zero causes the zero point position introduced by the PI controller to tend towards negative
infinity, thus eliminating its influence on the closed-loop time response.

CONCLUSION

In order to meet the power frequency condition for grid connection, the speed of the synchronous generator must
be strictly synchronized. To do this, the grid connection is required when the speed is close to the synchronous speed
(90% ~ 100%). In order to reduce the impact of the generator on the power system during parallel operation with the
grid, both DFIGs and synchronous generators must meet the parallel connection conditions. Synchronous generators
are excited by direct current. Unlike synchronous generators, DFIGs are excited by alternating current.

The current closed-loop control system based on the internal model control (IMC) theory has demonstrated good
tracking performance and anti-interference ability. The controller for the first-order system is the PI controller. It can
be seen from the above equation that by adjusting only one filter parameter, a reasonable PI parameter can be obtained.
The relationship between the filter parameter and the dynamic steady-state operation of the system and the robust
stability indicators can be seen.

A block diagram of the excitation vector control strategy during pure operation for a doubly powered induction
generator is developed. A PI controller with an input speed external controller parameter is adopted. The internal
command value of the output current is expressed by the external speed controller.
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