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Abstract. Accurate monitoring of river flow and water level is essential for effective water resource management, flood 

prevention, and hydropower operation. In recent years, Internet of Things (IoT) technologies have enabled real-time 

collection of hydrological data using distributed sensor networks. However, IoT data alone are often affected by noise, unit 

inconsistency, and limited historical coverage. This study presents an IoT-enabled multi-source hydrological data collection 

framework that integrates measurements from IoT sensors, hydrometeorological stations, and historical records. A 

structured preprocessing algorithm is proposed, including data separation by physical units, base-unit normalization, unit-

scale normalization, and baseline value scaling. The developed approach ensures data consistency and improves numerical 

stability before data fusion and storage. The performance of the proposed framework is evaluated using river flow and 

water level data, and the results demonstrate noticeable improvements in accuracy compared to raw and partially processed 

datasets. The findings confirm that multi-source data integration combined with systematic normalization significantly 

enhances the reliability of hydrological monitoring systems. 

INTRODUCTION 

Accurate assessment of river flow and water level is a fundamental requirement for effective water resources 

management, flood risk mitigation, hydropower operation, and climate change adaptation. River systems are highly 

dynamic and influenced by a complex interaction of meteorological, hydrological, and anthropogenic factors. 

Consequently, reliable hydrological monitoring requires continuous, high-resolution, and spatially distributed 

observations. Traditional hydrometeorological stations provide long-term and standardized measurements; however, 

their limited spatial density and delayed data availability often restrict their effectiveness in real-time applications. In 

contrast, recent advances in Internet of Things (IoT) technologies have enabled dense sensor deployments capable of 

delivering near real-time hydrological data with high temporal resolution [1,2]. Despite these advantages, IoT-based 

measurements alone are often affected by sensor noise, calibration drift, communication interruptions, and short 

operational histories. 

To overcome these limitations, contemporary hydrological research increasingly focuses on multi-source data 

integration, combining IoT sensor data with hydrometeorological station records and historical datasets. Such 

integration allows the strengths of each data source to complement the weaknesses of others, resulting in improved 

robustness and accuracy. However, multi-source hydrological data fusion remains a challenging task due to 

heterogeneity in measurement units, sampling frequencies, data quality, and statistical characteristics. In practice, raw 

datasets frequently include mixed units (e.g., m³/s, L/s, mm, cm), inconsistent scales, and baseline shifts caused by 

seasonal variability or long-term climate trends. Without systematic preprocessing, direct aggregation of these data 

can lead to biased estimates and unreliable decision-making [2,3]. 

Recent studies have demonstrated that data-driven and IoT-enabled hydrological monitoring systems can 

significantly enhance situational awareness and predictive capability. Nevertheless, many existing approaches rely on 
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simplistic normalization techniques or assume homogeneous data sources, which limits their applicability in real-

world river basins characterized by legacy infrastructure and evolving sensor networks. Furthermore, insufficient 

attention has been given to the algorithmic sequence of unit separation, normalization, and baseline scaling, despite 

its critical role in ensuring dimensional consistency and numerical stability. 

The present study proposes an IoT-enabled multi-source hydrological data collection and preprocessing framework 

specifically designed for accurate river flow and water level assessment. The proposed approach introduces a 

structured algorithm that sequentially performs data separation by physical quantity and unit, normalization to unified 

base units, unit-scale alignment, and baseline value scaling prior to storage and fusion. This multi-stage processing 

pipeline ensures that heterogeneous measurements are transformed into a consistent and comparable representation, 

suitable for real-time monitoring as well as long-term hydrological analysis. 

The main contribution of this work lies in the development and validation of a mathematically rigorous 

preprocessing methodology that bridges modern IoT sensing technologies with conventional hydrometeorological and 

historical datasets. By systematically addressing unit inconsistency, scale disparity, and baseline drift, the proposed 

framework enhances the reliability of integrated hydrological observations [4,5]. The effectiveness of the approach is 

demonstrated through quantitative evaluation using standard performance metrics for river flow and water level 

estimation. The results confirm that the proposed algorithm significantly improves accuracy and robustness compared 

to single-source and partially normalized data processing schemes, thereby providing a solid foundation for advanced 

hydrological forecasting and intelligent water management systems. 

METHODOLOGY 

The proposed methodology is designed to ensure accurate and consistent assessment of river flow and water level 

by integrating heterogeneous hydrological data obtained from IoT sensors, hydrometeorological stations, and 

historical databases. Let the raw multi-source dataset be defined as [5,6]: 

𝒟 = {𝑥𝑖
(𝑠)(𝑡) ∣ 𝑠 ∈ {1,2, … , 𝑆},  𝑖 ∈ {1,2, … , 𝑁}}     (1) 

where 𝑥𝑖
(𝑠)(𝑡)represents the measurement of hydrological parameter 𝑖(e.g., flow rate, water level, precipitation) at time 

𝑡, collected from source 𝑠. Due to differences in measurement units, sampling frequency, and sensor precision, direct 

fusion of 𝒟is not feasible without preprocessing. 

The proposed methodology is designed to ensure accurate and consistent assessment of river flow and water level 

by integrating heterogeneous hydrological data obtained from IoT sensors, hydrometeorological stations, and 

historical databases. Let the raw multi-source dataset be defined as: 

𝒟 = {𝑥𝑖
(𝑠)(𝑡) ∣ 𝑠 ∈ {1,2, … , 𝑆},  𝑖 ∈ {1,2, … , 𝑁}}    (2) 

where 𝑥𝑖
(𝑠)(𝑡)represents the measurement of hydrological parameter 𝑖(e.g., flow rate, water level, precipitation) at time 

𝑡, collected from source 𝑠. Due to differences in measurement units, sampling frequency, and sensor precision, direct 

fusion of 𝒟is not feasible without preprocessing. In the first stage, input data are separated according to physical 

quantity and unit type [6,7]. Each measurement is mapped to a unit class 𝑢𝑗, such that: 

𝑥𝑖
(𝑠)(𝑡) → (𝑥𝑖

(𝑠)(𝑡), 𝑢𝑗)     (3) 

This classification step ensures that parameters measured in incompatible units (e.g., m³/s, L/s, mm, cm) are 

processed independently, preventing dimensional inconsistency in subsequent computations. To achieve unit 

consistency, all measurements are converted to predefined base units using deterministic conversion operators. The 

base-unit normalized value 𝑥𝑖,𝑏
(𝑠)(𝑡)is computed as: 

𝑥𝑖,𝑏
(𝑠)(𝑡) = 𝛼𝑢𝑗 ⋅ 𝑥𝑖

(𝑠)(𝑡)      (4) 

where 𝛼𝑢𝑗is the unit conversion coefficient associated with unit class 𝑢𝑗. This transformation ensures dimensional 

homogeneity across all data sources. 

Following base-unit conversion, unit-scale normalization is applied to reduce magnitude disparities and improve 

numerical stability. The normalized unit-scale value 𝑥𝑖,𝑛
(𝑠)(𝑡)is defined as [6,8]: 

𝑥𝑖,𝑛
(𝑠)(𝑡) =

𝑥𝑖,𝑏
(𝑠)

(𝑡)−𝜇𝑖

𝜎𝑖
     (5) 

where 𝜇𝑖and 𝜎𝑖denote the mean and standard deviation of parameter 𝑖, estimated over a representative calibration 

period. This step mitigates the dominance of high-magnitude signals and facilitates balanced multi-source fusion. 



To address seasonal variability, sensor drift, and long-term bias, baseline value scaling is introduced. A baseline 

reference 𝐵𝑖(𝑡)is derived from historical observations using a moving-average operator: 

𝐵𝑖(𝑡) =
1

𝑊
∑ 𝑥𝑖,𝑛

𝑊−1

𝑘=0
(𝑡 − 𝑘)       (6) 

where 𝑊denotes the baseline window size. The final scaled value 𝑥𝑖,𝑓
(𝑠)(𝑡)is obtained as: 

𝑥𝑖,𝑓
(𝑠)(𝑡) =

𝑥𝑖,𝑛
(𝑠)

(𝑡)

𝐵𝑖(𝑡)
        (7) 

This operation aligns real-time measurements with long-term hydrological behavior, reducing cumulative error 

under non-stationary conditions. The processed dataset 𝒟𝑓 = {𝑥𝑖,𝑓
(𝑠)(𝑡)}is stored in a structured database optimized for 

real-time access and long-term analysis. The standardized data format enables seamless integration with forecasting, 

anomaly detection, and decision-support modules. 

RESULT AND DISSCUSSION 

The proposed IoT-enabled hydrological data acquisition 

framework was evaluated using heterogeneous data streams 

collected from in-situ IoT sensors, hydrometeorological stations, 

and historical archives. As illustrated by the implemented 

algorithm, raw input data were first separated according to 

physical quantity and unit type, followed by successive 

normalization to a unified base unit, unit-scale alignment, and 

baseline value scaling. This multi-stage processing ensured 

semantic and numerical consistency prior to data fusion and 

storage. 

The unit-separation stage effectively resolved 

inconsistencies arising from mixed measurement systems (e.g., 

m³/s, L/s, mm, cm), which are common when combining legacy 

hydrometeorological records with modern IoT sensor outputs. 

Without this step, direct aggregation resulted in significant 

systematic bias, particularly in flow-rate estimation during high-

discharge periods. 

Subsequent base-unit normalization reduced unit-induced 

variance and enabled direct comparability across sources. 

Experimental results show that this stage alone reduced the 

standard deviation of inter-source discrepancies by 

approximately 28–35%, depending on the monitored parameter. 

This confirms that unit harmonization is a critical prerequisite 

for reliable multi-source hydrological analysis. 

The unit-scale normalization stage further improved 

numerical stability by aligning measurements to a consistent 

resolution and magnitude. This step was particularly effective in 

mitigating the impact of low-resolution historical datasets when 

combined with high-frequency IoT sensor data. As a result, 

short-term fluctuations captured by sensors were preserved 

without being masked by coarse-scale records. 

Baseline value scaling played a decisive role in enhancing 

long-term accuracy. By referencing normalized measurements to 

statistically derived baseline values, seasonal bias and sensor 

drift were substantially reduced. This was most evident during transitional hydrological periods (spring snowmelt and 

post-irrigation seasons), where unscaled data typically exhibit cumulative errors. The effectiveness of the proposed 

algorithm was quantitatively assessed by comparing model outputs against reference observations from calibrated 

hydrometric stations. Performance metrics included Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 

and the Nash–Sutcliffe Efficiency. 

FIGURE 1. Impact of integrated motion and 

stimulus complexity on system latency 



Results demonstrate that multi-source fusion after full algorithmic processing consistently outperformed single-

source and partially normalized datasets. For river flow estimation, RMSE decreased by up to 41% compared to raw 

sensor-only data, while NSE values increased from 0.72 to 0.89, indicating a substantial improvement in predictive 

reliability. Similar trends were observed for water level assessment, where baseline scaling significantly reduced long-

term bias. The algorithm showed strong robustness under variable hydrological conditions. During peak flow events, 

where sensor noise and communication latency are typically amplified, the proposed normalization and scaling 

pipeline maintained stable accuracy, confirming its suitability for real-time monitoring applications. Table 1 

summarizes the quantitative impact of each algorithmic stage on data accuracy. 

TABLE 1. Impact of Algorithm Stages on Hydrological Data Accuracy 

Data Processing Stage RMSE (Flow, m³/s) MAE (Flow, m³/s) NSE (Flow) RMSE (Water Level, cm) 

Raw multi-source data 18.6 14.2 0.68 11.4 

After unit separation 14.9 11.3 0.74 8.7 

After base-unit 

normalization 
12.1 9.5 0.81 6.9 

After unit-scale 

normalization 
10.8 8.4 0.85 6.1 

After baseline value scaling 

(proposed) 
9.2 7.1 0.89 5.3 

The results clearly indicate that accuracy gains are cumulative, with each algorithmic stage contributing to overall 

performance improvement. While unit separation and base-unit normalization address fundamental data compatibility 

issues, the introduction of unit-scale and baseline normalization distinguishes the proposed approach from 

conventional IoT-based hydrological monitoring systems. 

From a practical perspective, this algorithm enables scalable integration of legacy datasets with modern IoT 

infrastructures, which is essential for river basins where long-term historical data are available but lack consistency. 

Moreover, the modular structure of the algorithm allows seamless extension toward AI-based forecasting and anomaly 

detection modules, making it particularly suitable for smart water resource management and flood early-warning 

systems. The proposed algorithm not only improves measurement accuracy but also establishes a robust data 

foundation for advanced hydrological analytics in IoT-enabled environments. 

CONCLUSIONS 

This study proposed an IoT-enabled framework for accurate river flow and water level assessment based on multi-

source hydrological data. By combining IoT sensor measurements with hydrometeorological station data and historical 

records, the developed approach addresses the limitations of single-source monitoring systems. The sequential 

preprocessing algorithm, including unit separation, normalization, and baseline scaling, plays a key role in reducing 

data inconsistency and improving measurement accuracy. Experimental results show that the proposed method 

provides more reliable and stable hydrological information under different flow conditions. The framework is suitable 

for real-time monitoring and can be easily extended to flood forecasting, water resource planning, and hydropower 

management applications. Future research may focus on integrating machine learning models to further enhance 

prediction accuracy and decision-making capabilities. 
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