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Abstract. The accelerated deployment of large-scale wind power constitutes a cornerstone of global decarbonization
pathways; however, the stochastic nature of wind resources and the growing exposure of wind energy systems to extreme
atmospheric phenomena present persistent challenges for secure and efficient power system operation. Among these
phenomena, lightning-induced disturbances represent a critical yet often overlooked source of turbine outages, sensor
degradation, and anomalous operational data, which can substantially impair the performance of conventional and purely
data-driven forecasting models. The article proposes an advanced artificial intelligence—based forecasting framework that
explicitly integrates lightning-aware monitoring and fault diagnosis into the wind power prediction process for large-scale
wind farms. The proposed approach is validated using operational data from a 500 MW utility-scale wind farm
representative of contemporary large-scale installations. The results demonstrate a pronounced reduction in forecasting
deviations relative to persistence-based and standalone deep learning benchmarks, particularly across short- and medium-
term horizons critical for dispatch optimization and reserve management. Overall, the study establishes that the integration
of advanced Al forecasting with lightning-aware monitoring constitutes a robust and scalable solution for enhancing both
predictive accuracy and operational resilience in next-generation wind energy systems.

INTRODUCTION

The global energy sector is undergoing a profound structural transformation driven by climate change mitigation
goals, energy security concerns, and rapid technological progress in renewable energy systems. Among all renewable
energy sources, wind power has emerged as one of the most mature and scalable technologies capable of delivering
large volumes of low-carbon electricity [1,4]. Over the past decade, global wind installations have increased steadily,
reflecting strong policy support, cost reductions, and expanding industrial capabilities. However, despite this rapid
growth, current deployment trajectories remain insufficient to meet long-term decarbonization targets, particularly
those aligned with net-zero emissions and the 1.5 °C climate pathway.

Figure 1 illustrates the dynamics of global wind power deployment between 2020 and 2030, showing annual new
wind capacity additions alongside the cumulative installed capacity required to remain on a net-zero-by-2050
trajectory. The bars represent actual and projected annual installations, while the line indicates the cumulative wind
capacity needed to satisfy climate targets. Although annual additions increased from approximately 95 GW in 2020
to a projected 190 GW by 2030, the figure clearly highlights a widening capacity gap. By 2030, the cumulative
installed wind capacity is expected to reach only about 2 TW, whereas approximately 3.2 TW would be required to
stay fully aligned with a 1.5 °C pathway. This implies that, under current growth rates, only about 68% of the required
wind capacity will be achieved by 2030, emphasizing the urgent need for accelerated deployment and improved
operational efficiency of existing wind assets [2,3].

As wind power penetration increases, power systems are increasingly exposed to the inherent variability and
uncertainty of wind resources. Unlike conventional generation, wind power output is governed by complex
atmospheric processes, including wind speed fluctuations, turbulence intensity, wake interactions among turbines, and
local terrain effects. These factors introduce strong nonlinearity and stochastic behavior into power generation profiles,
making accurate forecasting of wind power output a critical requirement for secure and economical power system
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operation. Forecasting errors directly affect unit commitment decisions, reserve allocation, congestion management,
and electricity market outcomes, particularly in systems with a high share of variable renewable energy.
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FIGURE 1. Global wind power installation trends and net-zero capacity gap.

The challenge becomes even more pronounced in large-scale wind farms, which may consist of hundreds of
turbines spread over vast geographical areas and connected through complex electrical and communication
infrastructures. In such systems, spatial correlations, turbine-to-turbine interactions, and heterogeneous operating
conditions must be considered simultaneously. Traditional wind power forecasting approaches—based on physical
models, numerical weather prediction (NWP), and linear statistical techniques—have provided valuable foundations
but often struggle to capture the full complexity of large-scale wind farm behavior, especially under rapidly changing
or extreme environmental conditions.

Recent advances in artificial intelligence (Al) and machine learning have opened new opportunities for improving
wind power forecasting accuracy. Deep learning architectures such as long short-term memory (LSTM) networks,
convolutional neural networks (CNNs), attention mechanisms, and hybrid ensemble models can learn nonlinear
temporal and spatial dependencies directly from large volumes of SCADA and meteorological data. These methods
have demonstrated substantial improvements over classical models across short-term, medium-term, and probabilistic
forecasting horizons [4,5]. As wind deployment accelerates requiring installations to grow nearly fivefold to close the
gap shown in Figure 1 the role of advanced Al-based forecasting becomes increasingly central to maintaining grid
stability and maximizing the utilization of installed wind capacity.

However, forecasting accuracy alone is not sufficient to ensure reliable operation of large-scale wind farms. As
wind turbines increase in size and hub height, they become more exposed to extreme weather phenomena, particularly
lightning activity. Lightning strikes are one of the leading causes of unplanned outages, insulation degradation, sensor
failures, and damage to power electronics in wind turbines. In regions with high thunderstorm density, lightning-
related disturbances can significantly reduce turbine availability and distort operational data streams. Sudden power
drops, communication interruptions, and abnormal SCADA signals caused by lightning events may degrade the
performance of Al-based forecasting models if such events are not properly detected and handled.

This interaction between forecasting accuracy and asset reliability is often underestimated in conventional wind
power forecasting studies. Al models trained on raw SCADA data may inadvertently learn patterns associated with
faults rather than true aerodynamic or meteorological behavior, leading to biased predictions and reduced
generalization capability. Therefore, advanced forecasting methods must be complemented by intelligent monitoring,
prognosis, and fault diagnosis systems capable of identifying lightning-induced disturbances and filtering or correcting
affected data segments.

The importance of this integrated approach is particularly evident for emerging wind power markets. Uzbekistan
provides a representative example, having recently commissioned the 500 MW Zarafshan wind farm—the largest
operating wind power plant in Central Asia. This project marks a significant milestone in the country’s energy



transition and forms part of broader national targets to rapidly expand renewable energy capacity over the coming
decade. As illustrated by global trends in Figure 1, merely installing new capacity is insufficient; ensuring high
availability, accurate forecasting, and resilient operation is equally critical for realizing the full benefits of large-scale
wind investments.

The present study is conducted within the framework of the project “Advanced Technologies for Lightning
Protection-Based Monitoring, Prognosis and Fault Diagnosis in Large-Scale Wind Farms”. The project aims to bridge
the gap between advanced Al-based power forecasting and reliability-oriented monitoring systems by explicitly
accounting for lightning-related disturbances in forecasting pipelines. By integrating forecasting, monitoring, and fault
diagnosis into a unified framework, the proposed approach seeks to enhance both the accuracy of wind power
predictions and the operational resilience of large-scale wind farms.

METHODOLOGY

The methodology is designed to improve forecasting accuracy and robustness under real operating conditions
characterized by strong nonlinearity, spatial heterogeneity, and exposure to extreme weather events. Operational data
were collected from a utility-scale wind farm with an installed capacity of 500 MW, including high-resolution SCADA
measurements (active power, wind speed, rotor speed, blade pitch angle, generator temperature) and auxiliary
meteorological data. In parallel, lightning detection signals and turbine protection logs were used to identify abnormal
operating regimes [6,7]. A fault-aware preprocessing stage was applied in which data samples affected by lightning-
induced disturbances, communication dropouts, or forced turbine shutdowns were either filtered or corrected using
statistically consistent interpolation. This step ensures that the learning process is driven primarily by physically
meaningful operating patterns. Input features were constructed by combining temporal sequences of SCADA variables
with derived indicators reflecting turbine availability and lightning exposure. The forecasting core is based on a deep
recurrent neural network with long short-term memory (LSTM) units, enabling the model to capture long-range
temporal dependencies in wind power generation. To enhance generalization, dropout regularization and sliding-
window normalization were employed [8,9]. The lightning-aware indicator function was integrated at the input layer
to modulate the contribution of samples associated with abnormal conditions.

Model training was performed using a rolling-window strategy to preserve temporal causality. Hyperparameters
were optimized on a validation subset, while final performance was evaluated on an independent test set for forecasting
horizons from 1 to 24 hours ahead. The proposed hybrid model was benchmarked against a persistence model and a
standalone LSTM approach. Performance comparison focused on aggregated deviation indicators relevant for
operational planning. This methodological framework ensures a consistent assessment of forecasting accuracy while
explicitly accounting for fault-induced disturbances, supporting reliable operation of large-scale wind farms under
real-world conditions.

RESULT AND DISSCUSSION

The obtained results demonstrate that advanced artificial intelligence—based forecasting models, when combined
with lightning-aware monitoring and fault-sensitive preprocessing, significantly enhance the predictability and
operational reliability of large-scale wind farms. Unlike conventional approaches that treat wind power output as a
purely stochastic signal, the proposed framework explicitly accounts for both aerodynamic power conversion
mechanisms and abnormal disturbances introduced by extreme weather events, particularly lightning strikes. This dual
consideration is essential for modern wind farms operating under increasingly harsh and variable environmental
conditions [10,11]. From a physical perspective, the instantaneous electrical power output of a wind turbine can be
expressed as

P(t) =5 p(t) A C,(A, B) v* (&) i (£) (1)
where pdenotes air density, Ais the rotor swept area, C,is the power coefficient dependent on tip-speed ratio Aand
blade pitch angle 8, vis wind speed, and nrepresents the aggregated efficiency of drivetrain and power electronics.
In large-scale wind farms, this nonlinear relationship is further distorted by wake interactions, turbine control actions,
and fault-induced operational constraints. Lightning-related events may abruptly alter n.or force partial turbine
shutdowns, creating discontinuities that cannot be explained by aerodynamic variables alone.

To address these complexities, the forecasting architecture employs a deep recurrent structure in which the temporal
evolution of wind power is modeled through gated memory dynamics [12,13]. In the LSTM core, the hidden state
update is governed by
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where i, f;, and o,are the input, forget, and output gates, respectively, and c,denotes the internal cell state. Lightning-
aware filtering is integrated upstream of the forecasting block by modifying the input sequence x;as

X; =Xt Inorm(t) (3)

where I, (t)is an indicator function derived from lightning detection signals and fault diagnosis logic, suppressing
or correcting samples associated with abnormal operating regimes. This mechanism prevents the propagation of fault-
induced artifacts into the learning process, thereby stabilizing the hidden state dynamics and improving long-horizon
forecast consistency.
Empirical evaluation was conducted on operational data from a large-scale wind farm with a total installed capacity
of 500 MW, representative of modern utility-scale installations such as the Zarafshan wind power plant in Uzbekistan.
The comparison includes a persistence benchmark, a standalone LSTM model, and the proposed hybrid AI model
with lightning-aware preprocessing. The forecasting horizon covers 1-24 hours ahead, which is particularly relevant
for dispatch planning and reserve allocation.Table 1 presents the aggregated forecasting results obtained from the test
dataset.

TABLE 1. Forecasting performance comparison for a 500 MW large-scale wind farm

Model Mean Absolute Deviation (MW) Root Deviation (MW) Normalized Deviation (%)
Persistence benchmark 342 44.0 8.8
LSTM-based model 21.7 29.4 5.4
Hybrid AT + lllghfcnlng—aware 15.9 213 39
monitoring

The results indicate that deep learning alone yields a substantial improvement over the persistence benchmark by
capturing nonlinear temporal dependencies in wind power generation. However, the most notable performance gains
are achieved when lightning-aware monitoring and fault diagnosis are incorporated into the forecasting pipeline. The
hybrid model reduces the root deviation by more than 50% relative to the baseline and by approximately 28%
compared to the standalone LSTM model. From a system-level perspective, these improvements have important
operational implications. Reduced forecast uncertainty directly translates into lower spinning reserve requirements,
improved congestion management, and enhanced reliability of power system operation. Moreover, the suppression of
lightning-induced anomalies improves the robustness of forecasts during extreme weather conditions, which are
expected to increase in frequency due to climate change. For emerging wind markets such as Uzbekistan, where large-
scale wind integration is accelerating, such robustness is crucial for maintaining grid stability and maximizing
renewable energy utilization.

The results confirm that forecasting accuracy in large-scale wind farms cannot be treated independently of asset
condition monitoring. The integration of advanced AI models with lightning-aware diagnosis forms a critical
foundation for resilient, data-driven operation of next-generation wind energy systems, aligning technological
development with the stringent requirements of net-zero power systems.

CONCLUSIONS

This study presented an integrated, lightning-aware artificial intelligence framework for forecasting electricity
generation in large-scale wind farms. By combining advanced deep learning techniques with fault-sensitive
monitoring and preprocessing, the proposed approach addresses two critical challenges of modern wind energy
systems: the inherent variability of wind resources and the operational disturbances caused by extreme weather events,
particularly lightning activity. The results demonstrate that incorporating lightning detection and fault diagnosis into
the forecasting pipeline significantly enhances prediction robustness and accuracy compared with conventional
persistence-based and standalone deep learning models.

The empirical analysis conducted on a 500 MW utility-scale wind farm confirms that the hybrid AI model
substantially reduces forecasting deviations across short- and medium-term horizons, which are most relevant for
dispatch planning and reserve allocation. Beyond numerical accuracy improvements, the proposed methodology
contributes to improved operational reliability by preventing fault-induced data artifacts from degrading model
performance. This is especially important for rapidly expanding wind power systems in emerging markets such as



Uzbekistan, where large-scale wind integration places increasing demands on grid stability and digital energy
management.
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