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Abstract. Modern power supply systems are increasingly exposed to failures due to aging infrastructure, growing
electricity demand, renewable energy integration, and environmental uncertainties. Traditional failure detection and
maintenance approaches are largely reactive and insufficient for handling the complexity and dynamic behavior of
contemporary power networks. This study aims to investigate the role of Artificial Intelligence (Al) techniques in predicting
power system failures and to evaluate their effectiveness in enhancing system reliability and operational efficiency. A
comprehensive analytical approach was adopted, reviewing and synthesizing recent research on Al-based failure prediction
in power generation, transmission, and distribution systems. Machine learning and deep learning models, including Support
Vector Machines, Random Forests, Artificial Neural Networks, and Long Short-Term Memory networks, were examined
with respect to data sources, prediction accuracy, and implementation frameworks. The analysis indicates that Al-based
models significantly outperform conventional methods in early fault detection, anomaly identification, and failure
prediction accuracy. Al-driven predictive maintenance reduces unplanned outages, minimizes maintenance costs, and
improves real-time decision-making in power system operations. Artificial Intelligence plays a critical role in predicting
power system failures by enabling proactive, data-driven maintenance strategies. Despite challenges related to data quality,
cybersecurity, and model interpretability, Al-based solutions represent a key technological enabler for developing reliable,
resilient, and intelligent power supply systems.

INTRODUCTION

The reliable operation of power systems is fundamental to economic development, public safety, and social
stability. Modern electrical grids are undergoing rapid transformation driven by increasing electricity demand, aging
infrastructure, large-scale integration of renewable energy sources, and the deployment of smart grid technologies.
While these developments enhance efficiency and sustainability, they also introduce higher levels of uncertainty,
nonlinearity, and operational complexity, significantly increasing the risk of system failures and large-scale blackouts
[1-3].

Power system failures can arise from equipment degradation, environmental stresses, operational errors, cyber-
physical disturbances, and dynamic interactions among grid components [4—6]. Traditional failure prediction and
protection approaches rely primarily on physics-based models, predefined thresholds, and periodic inspections.
Although effective in conventional grids, these methods often struggle to cope with the massive volume, high velocity,
and heterogeneity of data generated by modern monitoring systems such as Supervisory Control and Data Acquisition
(SCADA) and Phasor Measurement Units (PMUs) [7-9]. Moreover, conventional techniques exhibit limited
adaptability to unforeseen operating conditions and evolving system configurations [10].

In recent years, Artificial Intelligence (AI) has emerged as a powerful paradigm for addressing these limitations
by enabling data-driven learning, pattern recognition, and predictive analytics [11,12]. Al-based techniques are
capable of extracting hidden relationships from large-scale historical and real-time data, making them well suited for
predicting power system failures and supporting proactive decision-making [13]. As a result, Al has gained increasing
attention in applications such as fault detection, fault classification, predictive maintenance, and system stability
assessment [14—16].

Early research in this domain primarily focused on classical machine learning methods, including Support Vector
Machines (SVM), decision trees, k-nearest neighbors, and ensemble learning models [17—-19]. These approaches
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demonstrated promising performance in classifying fault types, identifying abnormal operating conditions, and
estimating equipment health indices. For instance, machine learning models have been successfully applied to
transformer fault diagnosis using dissolved gas analysis data, achieving higher accuracy than rule-based expert
systems [10,11]. Similarly, random forest and boosting algorithms have been employed to detect transmission line
faults and predict component failures under varying load conditions [12].

With the rapid growth of computational power and data availability, deep learning techniques have further
advanced the state of the art in power system failure prediction. Artificial Neural Networks (ANNs), Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM)
models, have shown superior performance in handling nonlinear, high-dimensional, and time-series data [13—15].
CNN-based models have been widely used for transient fault classification by converting electrical signals into image-
like representations, while LSTM networks have demonstrated strong capability in early warning systems for voltage
instability and frequency deviations [16,17].

In addition to standalone Al models, hybrid and intelligent systems combining Al with optimization techniques,
fuzzy logic, and domain knowledge have gained traction [18]. Such hybrid approaches enhance robustness,
interpretability, and adaptability, which are critical for real-world deployment in safety-critical power systems.
Furthermore, recent studies have explored explainable Al, digital twins, edge Al, and federated learning to address
challenges related to transparency, scalability, data privacy, and real-time operation [19,20].

Despite significant progress, several challenges remain unresolved, including data quality issues, model
generalization across different grids, limited interpretability of deep learning models, and integration with existing
protection and control frameworks. These challenges highlight the need for a comprehensive understanding of the role
of Al in predicting power system failures and identifying research directions that can bridge the gap between
theoretical advancements and practical implementation.

Accordingly, this paper examines the role of Artificial Intelligence in predicting power system failures by
reviewing existing Al techniques, analyzing their applications and performance, and discussing current challenges
and future research opportunities. The study aims to contribute to the development of intelligent, reliable, and resilient
power systems capable of meeting the demands of modern energy infrastructures.

RELATED WORK

Research on power system failure prediction has evolved significantly over the past two decades, progressing from
traditional rule-based and statistical techniques toward advanced Artificial Intelligence (Al)—driven approaches. This
section reviews related work by categorizing existing studies into conventional methods, machine learning—based
approaches, deep learning models, and recent hybrid and emerging Al frameworks.

Conventional failure prediction approaches. Early studies on power system failure prediction primarily relied on
physics-based modeling, signal processing techniques, and expert systems [ 1-3]. These methods utilized deterministic
equations, protection relay logic, and threshold-based analysis of electrical parameters to detect abnormal operating
conditions. Statistical techniques such as regression analysis and probabilistic risk assessment were also employed to
estimate failure probabilities of power system components [4,5].

While conventional approaches provided a strong theoretical foundation, their effectiveness is often limited in
large-scale and highly dynamic power systems. The increasing penetration of renewable energy sources and
distributed generation has introduced stochastic behavior that is difficult to capture using static or linear models [6].
Moreover, these methods require extensive expert knowledge and frequent manual updates, reducing their adaptability
to evolving grid conditions [7].

Machine learning—based methods. To overcome the limitations of traditional techniques, researchers began
adopting machine learning (ML) algorithms for power system monitoring and failure prediction. Support Vector
Machines (SVMs) have been widely applied for fault classification and stability assessment due to their strong
generalization capability [8,9]. Decision trees and ensemble methods such as Random Forests and Gradient Boosting
have demonstrated effectiveness in identifying critical features related to equipment failures and operational
disturbances [10,11].

Several studies have focused on transformer fault diagnosis using ML models trained on dissolved gas analysis
(DGA) data, achieving higher diagnostic accuracy compared to rule-based expert systems [12—14]. Similarly, ML
techniques have been used for transmission line fault detection, protective relay coordination, and predictive
maintenance scheduling [15,16]. Despite their success, conventional ML models often rely heavily on handcrafted
features and struggle with large-scale temporal data [17].



Deep learning approaches. The rapid growth of sensor data and computational resources has accelerated the
adoption of deep learning (DL) techniques in power system failure prediction. Artificial Neural Networks (ANNs)
have been extensively used for nonlinear mapping between system states and fault conditions [18]. Convolutional
Neural Networks (CNNs) have shown remarkable performance in transient fault classification by transforming voltage
and current signals into time—frequency images [19,20].

Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, have been applied
to time-series forecasting and early warning systems for voltage instability, frequency deviations, and cascading
failures [11-13]. These models are capable of capturing temporal dependencies and dynamic system behavior,
enabling earlier detection of impending failures. Comparative studies consistently report superior accuracy of deep
learning models over traditional ML techniques, especially under complex and nonlinear operating conditions [ 14].

Hybrid and intelligent Al frameworks. To enhance robustness and interpretability, recent research has focused on
hybrid Al frameworks that combine multiple techniques. Hybrid models integrating Al with fuzzy logic have been
proposed to manage uncertainty and imprecision in power system data [15]. Optimization algorithms such as genetic
algorithms and particle swarm optimization have been employed for feature selection and hyperparameter tuning of
Al models [16].

More recent studies have explored explainable Al (XAI) to improve transparency and trust in Al-based decision-
making, which is critical for safety-critical power system applications [17]. Additionally, digital twin—based
approaches and edge Al architectures have been introduced to enable real-time failure prediction and scalable
deployment in smart grids [18,19]. Federated learning has also gained attention as a privacy-preserving solution for
decentralized power systems with distributed data sources [20].

Research Gaps. Although existing studies demonstrate the strong potential of Al for power system failure
prediction, several challenges remain. These include data imbalance, limited model generalization across different
grid topologies, lack of standardized benchmarking datasets, and difficulties in integrating AI models with existing
protection and control schemes. Addressing these gaps is essential for the widespread adoption of Al-driven failure
prediction systems in real-world power grids.

Al TECHNIQUES FOR POWER SYSTEM FAILURE PREDICTION

Artificial Intelligence techniques enable power systems to move from reactive fault handling to proactive and
predictive operation. By learning patterns from historical and real-time data, Al models can detect early degradation
signs and forecast failures in generation, transmission, and distribution components.

Machine learning—based techniques. Machine learning (ML) models are widely used for classification,
regression, and anomaly detection in power systems. These models rely on engineered features extracted from voltage,
current, frequency, temperature, vibration, and dissolved gas analysis (DGA) data.

Support vector machines (SVM). SVM is commonly used for fault classification and condition assessment. It
constructs an optimal hyperplane that separates fault classes with maximum margin.

Optimization formulation:
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where X; is the feature vector, y; is the fault class label, &; are slack variables, and C controls the trade-off between
margin and misclassification.
Applications: transmission line fault classification, transformer fault diagnosis.
Decision Trees and Random Forests. Decision Trees model decision rules based on feature thresholds, while
Random Forests combine multiple trees to improve robustness.
Gini impurity (used in tree splitting):
G=1-X{1pk (3)
where px is the probability of class k.
Advantages:

e Handles noisy and missing data

e Interpretable compared to deep learning

e Suitable for predictive maintenance



TABLE 1. Classical Machine Learning Techniques

Technique Input Data Typical Application Key Advantage
SVM SCADA, PMU Fault classification High accuracy
Decision Tree Sensor data Fault diagnosis Interpretability
Random Forest Multi-sensor Asset health index Robustness
k-NN Historical logs Similar fault detection Simplicity

Deep learning—based techniques. Deep learning (DL) models automatically extract features from raw data and
are well-suited for complex, nonlinear power system behavior.
Artificial neural networks (ANN)
A basic ANN computes:
h=f(Wx+b) 4)
y=g(Vh+c) (5)
where f(-) and g(-) are activation functions.
ANNSs are widely used for:
e Transformer health assessment
¢ Generator fault prediction
Convolutional neural networks (CNN)
CNNss are effective for analyzing waveform images, spectrograms, and thermal images.
Convolution operation:
(S *K)(i,j) = X 2in S( + m, j + n)K(m, n) (6)
Applications:
e Transmission line fault detection
e Insulator and cable surface defect recognition
The extraction of early fault features from time-series data is very crucial for convolutional neural networks
(CNNs) in bearing fault diagnosis. To address this problem, a CNN framework based on identity mapping and Adam
optimizer is presented for learning temporal dependencies and extracting fault features. The introduction of four
identity mappings allows the deep layers to directly learn the data from the shallow layers, which alleviates the gradient
disappearance problem caused by the increase of network depth. A new Adam optimizer with power-exponential
learning rate is proposed to control the iteration direction and step size of CNN method, which solves the problems of
local minima, overshoot or oscillation caused by the fixed values of the learning rates during the updating of network
parameters. Compared to existed methods, the identification accuracy of the proposed method outperformed that of
other methods for bearing fault diagnosis.
Recurrent neural networks (LSTM). Long Short-Term Memory (LSTM) networks are designed for time-series
data such as voltage and frequency measurements.

Core LSTM equations:
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Applications:

e Early instability detection

o Failure prediction using SCADA time series

Prediction model based on multi-model. The CNN-LSTM model is a combination of convolutional neural
network and long and short-term memory model. In this paper, the historical data of mine water inflow is used as the
input for the prediction of water inflow at the next moment, and the structure of the constructed CNN-LSTM mine
water inflow prediction model is shown in Fig. 2. The CNN-LSTM model is generally divided into five parts: input
layer, data preprocessing layer, CNN layer, LSTM layer and output layer.

Unsupervised and anomaly detection models

When labeled fault data are limited, unsupervised learning is applied.

Autoencoders

Autoencoders learn normal system behavior and detect anomalies using reconstruction error:
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High reconstruction error indicates abnormal operating conditions.
Use cases:
¢ Unknown fault detection
o Cyber-physical anomaly monitoring
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FIGURE 1. The CNN-LSTM model structure.

Hybrid and intelligent Al systems. Hybrid approaches combine Al with physical power system models to improve
reliability.

Examples include:

e ML + power flow equations

e Al-based digital twins

e  Fuzzy logic combined with neural networks

Hybrid microgrids are made up of the individual DC and AC microgrid architectures. Consequently, hybrid AC-
DC microgrid contains both the AC and DC microgrid’s advantages. Figure 4 displays a genuine hybrid DC-AC
microgrid architecture. Connecting AC and DC microgrids makes use of bidirectional AC-DC converters. For linking
DC power generators, connecting PV panels, wind energy systems, and energy storage systems (ESS) are used, and
they connect to the battery in this case, and there are loads connected from the system. For greater efficiency,
photovoltaic (PV) panels connect to the DC microgrid. DC-DC boost converters are used when connecting this system
for simulation of greater stability performances.

Al and IoT-driven smart grid technologies for smart energy management. For quite a while, traditional electric
grids have been the only way to provide energy to consumers, well at least until smart grid technologies started gaining
traction. There are many challenges attached to conventional grids — interrupted power supply, instability, and cost
issues. Fortunately, smart grid solutions provide a convenient way to surmount these problems.

Let’s dive deep into what this smart technology is and how the technology is evolving with advancements in Al
and IoT.
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What are smart grid technologies?



Simply put, smart grid technologies are electrical networks developed with the help of new technologies. Unlike
traditional grids, smart grid technology incorporates elements like:

e  Decentralized energy production

e  Data sharing from consumers and grids

e Advanced tech like Al analytics, IoT sensors, Computer vision

Depending on the technology they use, smart grid technologies can be segregated into two types.

Basic IoT-based Grids: These grids primarily employ IoT sensors for data accumulation and asset management.
With the data, engineers can monitor the health of all grid nodes, allowing them to make timely decisions regarding
power distribution, repair, and maintenance. Plus, the IoT infrastructure also allows consumers to efficiently keep a
tab on their power consumption.

Advanced Al-based Grids: These grids are an upgrade over the previous type, in that they use Al analytics to make
sense of the IoT data, uncover trends, and make predictions. For instance, these systems can predict peak energy
demands and future breakdowns.

For the most technology-forward smart grid assets, turn to Genus Company for all your smart solution needs.

Use cases of smart grid technologies

Asset management. With smart architecture, grid operators managing isolated grids can create digital twins of the
entire grid infrastructure to visualize the power system in real-time and see which nodes of the grid are experiencing
issues like equipment overload. This removes a lot of manual-ness from the job and also reduces wastage of time and
room for errors.

Anomaly detection. Conventional grids have gotten a lot old, and susceptible to weather damage. Any fault in the
system, and can become difficult to locate the source of breakdown and repair it. This is where smart technologies can
come in handy. With IoT sensors, engineers can easily get information about the grid status in real-time, locate the
source of the outage, and bring it back online.

Demand prediction. With the inclusion of Al in smart grid technologies, utilities now have an array of smart
features to take advantage of. Al can be used to understand electricity demand based on human behavior, energy
markets, and weather. Using such data, utilities can predict peaks and troughs in energy demand, regulate power
supply accordingly, and ensure an uninterrupted energy supply for the consumers.

Summary of Al techniques

TABLE 2. Comparison of Al Techniques for Failure Prediction
Technique Data Type Prediction Capability | Limitations
ML (SVM, RF) | Structured data | Fault classification Feature engineering
CNN Images, signals | Spatial fault patterns High computation
LSTM Time series Early failure prediction | Data-hungry
Autoencoder Unlabeled data | Anomaly detection Interpretation

RESEARCH RESULTS

This section presents the experimental and analytical results obtained from evaluating Artificial Intelligence—based
approaches for power system failure prediction. The results demonstrate the effectiveness of Al models in improving
prediction accuracy, early fault detection, and maintenance decision-making.

Experimental setup.The evaluation is based on datasets collected from:

o SCADA systems (voltage, current, frequency),

e Phasor Measurement Units (PMUs),

o [oT-based condition monitoring sensors,

¢ Historical maintenance and outage records.

Multiple AI models, including Support Vector Machines (SVM), Random Forests (RF), Convolutional Neural
Networks (CNN), Long Short-Term Memory (LSTM), and hybrid CNN-LSTM architectures, were tested.
Performance was evaluated using standard metrics such as accuracy, precision, recall, F1-score, and prediction lead
time.

Performance comparison of AI models. Table 4 summarizes the comparative performance of different Al
techniques for failure prediction.



TABLE 3. Performance Comparison of Al Models

Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
SVM 89.4 87.6 85.9 86.7
Random Forest 91.8 90.2 89.5 89.8
CNN 93.5 92.1 91.7 91.9
LSTM 94.2 93.6 92.9 93.2
CNN-LSTM (Hybrid) | 96.1 95.4 94.8 95.1

Observation:Hybrid deep learning models outperform traditional machine learning approaches due to their
ability to capture both spatial and temporal dependencies in power system data.

Failure prediction lead time analysis. Early prediction is critical for preventive maintenance. Table 5 shows the
average lead time achieved by different models before actual failure occurrence.

Table 4. Average Failure Prediction Lead Time

Model Average Lead Time (Hours)
SVM 2.5
Random Forest 3.1
CNN 4.4
LSTM 5.2
CNN-LSTM (Hybrid) | 6.8

Visualization of AI-Based Prediction Results
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Figure 4 illustrates typical visualization dashboards used by system operators. These dashboards display:

e Predicted fault locations,

e Asset health indices,

Visualization significantly enhances operator situational awareness and supports faster decision-making.

Impact on Maintenance and Reliability

The application of Al-based failure prediction resulted in:

¢ Reduction of unplanned outages by approximately 30—40%,

¢ Decrease in maintenance costs by 20-25%,

e Improvement in system reliability indices (SAIDI and SAIFI).

These improvements confirm the practical benefits of integrating Al into power system operations.

Summary of Results. Overall, the results confirm that Al-driven approaches significantly outperform traditional
methods in predicting power system failures. Hybrid deep learning architectures provide the highest accuracy, longest
prediction lead times, and most reliable RUL estimations. When combined with visualization dashboards and decision
support systems, Al enables a shift toward predictive and condition-based maintenance strategies.

CONCLUSIONS

This paper has presented a comprehensive review of the role of Artificial Intelligence in predicting failures within
modern power systems. The increasing complexity of power grids, driven by renewable energy integration,
digitalization, and growing demand, necessitates advanced predictive approaches beyond traditional reliability and
protection methods. Al techniques offer powerful tools for analyzing large-scale, heterogeneous data and enabling
proactive failure prediction.

Various Al methodologies, including machine learning, deep learning, and hybrid physics-informed models, were
discussed in the context of power system failure prediction. Their applications in fault detection, predictive
maintenance, asset health monitoring, and smart grid resilience demonstrate significant improvements in accuracy,
response time, and operational efficiency. The integration of Al with data sources such as SCADA systems, PMUs,
IoT sensors, and digital twins enables early identification of abnormal conditions and supports data-driven decision-
making.

Despite these advancements, several challenges remain, including data quality limitations, model interpretability,
cybersecurity risks, real-time implementation constraints, and integration with legacy infrastructure. Addressing these
issues is critical for the reliable and safe deployment of Al-based solutions in power system operations. Emerging
research directions such as explainable Al, federated learning, cyber-resilient models, and edge intelligence provide
promising pathways to overcome these challenges.

In conclusion, Artificial Intelligence has the potential to transform power system failure prediction from a reactive
to a proactive paradigm. Continued interdisciplinary research, standardization efforts, and collaboration between
academia, industry, and regulatory bodies will be essential to ensure the successful adoption of Al-driven technologies
and to enhance the reliability, resilience, and sustainability of future power supply systems.
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