

V International Scientific and Technical Conference Actual Issues of Power Supply Systems

Analysis of geological mineralogical and enrichment technology of polymetal ore of the khandiza deposit

AIPCP25-CF-ICAIPSS2025-00586 | Article

PDF auto-generated using **ReView**

Analysis of geological, mineralogical, and enrichment technology of polymetal ore of the khandiza deposit

Bekhzod Soatov^{1, a)}, Abdurashid Khasanov², Kamol Khakimov¹, Elbek Mukhammadiyev¹, Sardor Abdisoatov¹

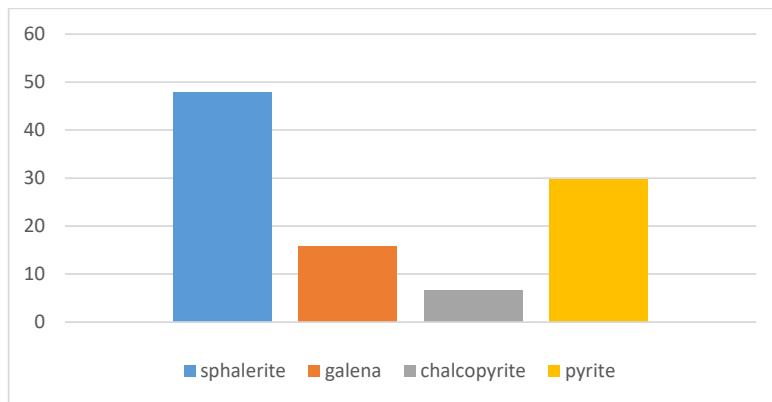
¹*Termez State University of Engineering and Agricultural Technology, Termez, Uzbekistan.*

²*Deputy Chief Engineer for Science at Almalyk KMK JSC, Almalyk, Uzbekistan.*

^{a)} Corresponding author: bekzodsoatov16@gmail.com

Abstract. This work is devoted to the study of the geological and industrial properties, mineralogical and chemical composition of the ores of the Khandiza polymetallic deposit, as well as the analysis of the technology of ore beneficiation by the flotation method. Based on the research results, the granulometry, mineral structure, and main useful minerals (sphalerite, galena, chalcopyrite, pyrite) of the ores were determined, and their chemical composition (Cu - 0.35-2.35%, Pb - 1.7-6.6%, Zn - 4.8-15.5%) was confirmed. Results of high metal recovery in open and closed cycles were obtained using a collective-selective flotation scheme. [5] The work contributes to the efficient operation of the deposit and the optimization of the process of complex metal extraction.

INTRODUCTION


The Khandiza polymetallic deposit is located in the central part of the Surkhanata Mountains, in the territory of the Hissar Range, approximately 50 km from the center of the Sarosyo district, 50 km from the city of Denau and the Uzbekistan River. Polymetallic mineralization in this area has been studied for several decades. Although the initial geological exploration work did not give sufficient results in assessing the reserves of the deposit, further in-depth studies showed that the deposit is a promising object of industrial significance. [6;7]

During the study of the beneficiation process, the flotation process was recommended as an effective technological solution for ore processing. It is planned that the concentrates obtained by this method will be converted into a commodity metal by metallurgical processing. As a result of these scientific and technical studies, the presence of C1 category reserves of the Khandiza deposit was analyzed by geologists and confirmed by the State Committee for Reserves. [4]

The purpose of this work is to study the geological and industrial properties, mineralogical composition, and chemical composition of the ores of the Khandiza polymetallic deposit, as well as to analyze the technology of ore beneficiation by the flotation method and determine the optimal beneficiation regime. The research results will contribute to the efficient development of the deposit and the optimization of the process of complex metal extraction.

EXPERIMENTAL RESEARCH

Mineralogical analysis: The main minerals in the ores are sphalerite, galena, and to a lesser extent chalcopyrite and pyrite. The quantitative ratio of these main sulfides is as follows: sphalerite - 47.8%, galena - 15.8%, chalcopyrite - 6.7%, pyrite - 29.7%, [3;6] and their ratio directly affects the technological processing properties of the ore. The mineralogical structure of the ore is observed in the form of polymineral aggregates, cellular, vein-like, or crossed. Mineral grains are often uneven, characterized by intergrowth zones and complex interfaces. Useful sulfide minerals often have xeno- and hypidiomorphic forms, which complicates their technological separation.[1, 12]

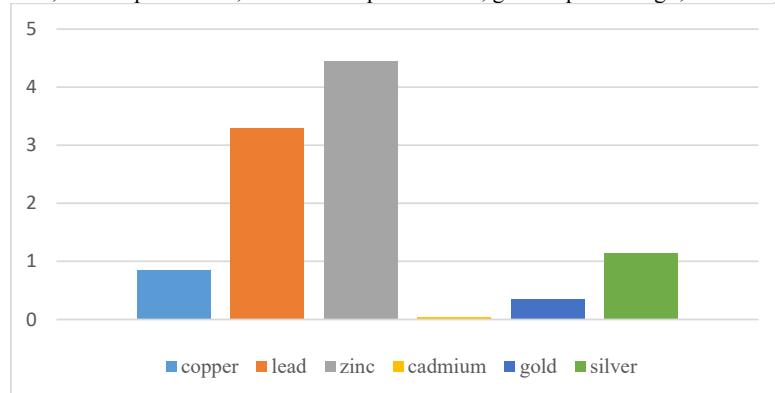
FIGURE 1. Main minerals in the composition of ores

The sizes of all mineral grains in the ore vary in a very wide range: from micron units to a few millimeters, but in most cases prevail in the range of 40-300 μm . Such variable granulometry requires the application of stepwise crushing techniques [7,9].

The ore structure consists mainly of allotriomorphic and hypidiomorphic grains, and the minerals do not have a clear crystallographic shape (with the exception of pyrite in some cases) [3]. This structural feature complicates the processes of crushing and grinding the ore. The main non-metallic components that make up the ore are quartz, stratified silicates (sericite, hydromica), as well as, to a lesser extent, chlorite and biotite. These components are often arranged as monomineral inclusions in the form of a fine-grained matrix or a separate lens. Feldspars and small amounts of carbonates (calcite, dolomite) are also found in the form of microscopic lenses [2].

TABLE 1. Quantitative ratio of minerals in the sample

No	Minerals	Amount, %
1.	Sphalerite	10,0
2.	Galenite	3,3
3.	Chalcopyrite	1,4
4.	Discolored ores	tenth
5.	Secondary minerals of zinc, lead and copper	tenth
6.	Pyrite	6,2
7.	Iron hydroxides	0,3
8.	Quartz	52,0
9.	Feldspars	1,6
10.	Layered silicates	24,3
11.	Carbonates (calcite, dolomite)	0,4


Layered silicates mainly consist of sericite (muscovite), hydromica (hydromuscovite), as well as a small amount of chlorite and biotite. Secondary minerals include smithsonite, covellite, chalcocite, anglesite, cerucite, and other forms of Pb, Zn, Cu carbonates, sulfates, and hydrosulfates.

If we dwell separately on the identified minerals, the following conclusions can be drawn: Sphalerite is the main useful mineral in the sample, located in the form of large veins, nests, and veins of uneven shape, often in the form of a matrix. The size of the discharge varies from 10 μm to 1 mm. Sphalerite usually has a light yellow color, which indicates a low iron content. It forms complex interstructures with galena and chalcopyrite, which complicates the extraction of minerals.

Galenite is the main sulfide mineral in the sample. It is widespread in combination with sphalerite. It is located in the form of an emulsion, in the form of veins, nests, and grains (10-800 μm). Morphology is very diverse, most often in the form of xenoform and sometimes idiomorphic grains.

Chalcopyrite is the least abundant useful sulfide in the ore, mostly located in thin sections or small zones within the sphalerite. Due to its emulsion dispersion, its separation requires complex technological approaches.

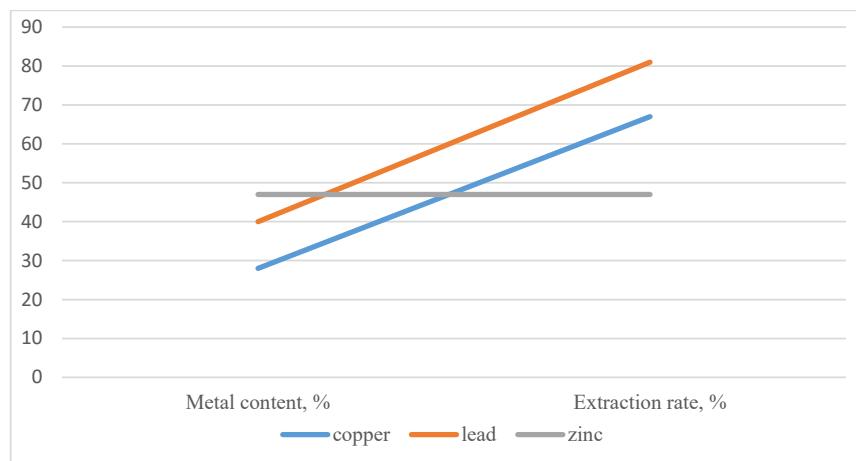
Chemical analysis: It was revealed that the main useful components in the approved reserves are: copper - up to 0.85%, lead - up to 3.29%, zinc - up to 4.45%, cadmium - up to 0.041%, gold - up to 0.35 g/t, silver - up to 1.14 g/t.

FIGURE 2. Composition of approved reserves

As a result of technological studies of four ore samples with the main useful components at the Khandiza deposit, the following chemical composition (wt.-%): Cu - 0.35-2.35; Pb - 1.7-6.6; Zn - 4.8-15.5; C - 5.6-22.4; SiO₂ - 22.8-71.8. The main useful minerals in the ore are chalcopyrite, galena, sphalerite, and pyrite, and quartz has been identified as the rock-forming minerals. [8]

As a result of technological studies of four ore samples with the main useful components at the Khandiza deposit under the conditions of JSC "AGMK," the following chemical composition (mass %) was determined: Cu - 0.35-2.35; Pb - 1.7-6.6; Zn - 4.8-15.5; C - 5.6-22.4; SiO₂ - 22.8-71.8. The main useful minerals in the ore are chalcopyrite, galena, sphalerite, and pyrite, and quartz has been identified as the rock-forming minerals. [6].

RESEARCH RESULTS


Open-cycle flotation results: Based on the experimental work on enrichment, the following collective-selective scheme was developed:[1, 10]

- Crushing of ore to fraction of 75% -0.074 mm;
- isolation of the collective concentrate Cu-Pb and its additional grinding to a fraction of 100% -0.044 mm;
- Selective separation of mixed copper and lead concentrate using Na₂C₂O₄ (sodium hydrosulfide, 1500 g/t);
- Chemical processing of Cu and Pb flotation products with H₂SO₄; [11]

Sending for selective extraction of Zn from waste of the copper-lead cycle. The research was conducted in an open cycle, and the following main technological indicators were recorded. [5] (Table 2):

TABLE 2. Main beneficiation indicators based on the results of the open cycle

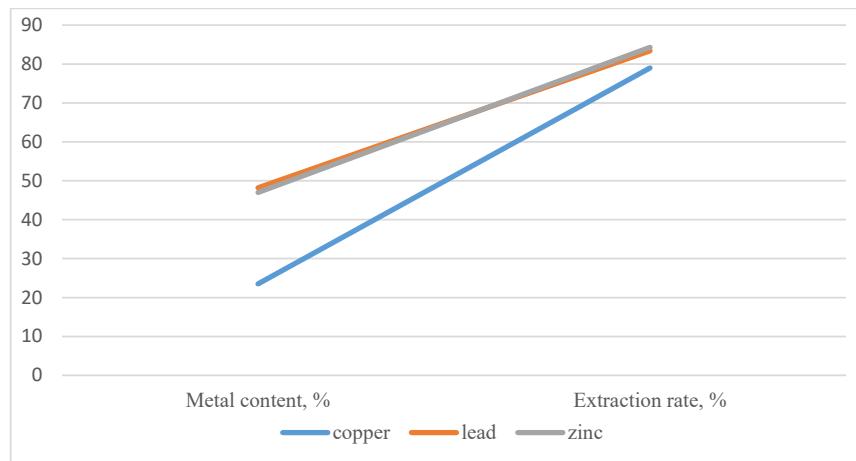
Concentrate type	Metal content, %	Extraction rate, %
Copper (Cu)	28,0	67,0
Lead (Pb)	40,0	81,0
Zinc (Zn)	47,0	47,0

FIGURE 3. Main beneficiation indicators based on the results of the open cycle

Closed cycle flotation results: According to calculations, under closed-loop conditions, the following separation indicators can be achieved:

- Copper - 70%;
- Lead - 90%;
- Zinc - 70-80%.

The low degree of metal recovery during the complex extraction of metals as a result of polymetallic ore beneficiation necessitated a revision of the reagent regime, in which the following regimes were reviewed:


- Crushing of ore to a fraction of 90% -0.074 mm;
- obtaining a collective concentrate of Cu-Pb (Na₂S - 2000 g/t, ZnSO₄ - 1400 g/t, KCN - 300 g/t);
- Desorption with Na₂S for 30 minutes (5 kg/t);
- selective separation with Na₂SO₃ (1700 g/t);
- obtaining Cu and Pb concentrates in H₂SO₄ (1500 g/t);
- Additional processing in a medium of cyanide (100 g/t) and soda;

Extraction of Zn from copper-lead tailings using CaO (100 mg/l) and CuSO₄ (300 g/t). [2]

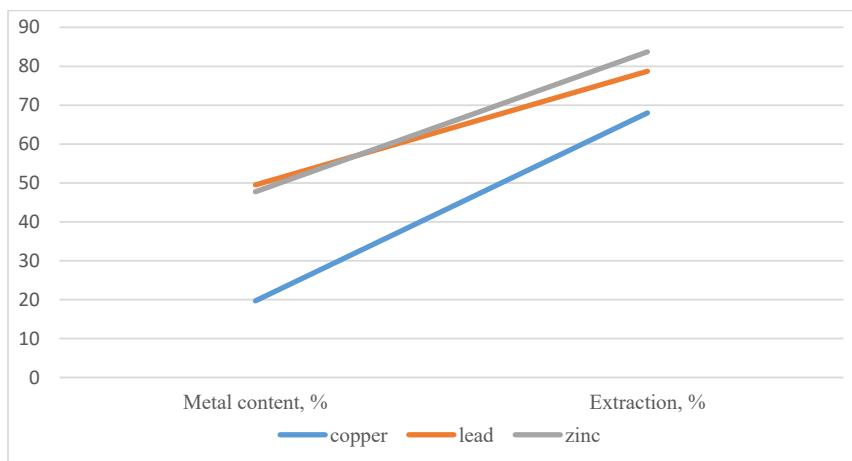

As a result of the experiments conducted according to the proposed scheme, the following indicators were obtained (Table 3):

TABLE 3. Enrichment indicators based on closed cycle results

Initial ore composition	concentrate type	Metal (%)	Extract (%)
Cu – 0,56%; Pb – 2,55%; Zn – 5,2%	Copper (Cu)	23,5	79,0
	Lead (Pb)	48,2	83,4
	Zinc (Zn)	47,0	84,3
Cu – 0,45%; Pb – 1,7%; Zn – 6%	Copper (Cu)	19,7	68,0
	Lead (Pb)	49,5	78,7
	Zinc (Zn)	47,4	83,7

FIGURE 4. According to the results of the closed cycle, the beneficiation indicators are Cu - 0.56%; Pb - 2.55%; Zn - 5.2%

FIGURE 5 According to the results of the closed cycle, the beneficiation indicators are Cu - 0.45%; Pb – 1.7%; Zn -6%

CONCLUSIONS

The main useful minerals of the ore of the Khandiza polymetallic deposit are sphalerite (47.8%), galena (15.8%), chalcopyrite (6.7%) and pyrite (29.7%), the composition of which determines the technological properties of the ore. The granulometry of the mineral grains (10 μm -1 mm, in most cases 40-300 μm) and the allotriomorphic-hypidiomorphic structure complicate the processes of ore crushing and flotation [18-40].

The chemical composition confirmed the presence of copper - 0.35-2.35%, lead - 1.7-6.6%, zinc - 4.8-15.5%, C - 5.6-22.4%, and SiO_2 - 22.8-71.8%. The collective-selective flotation scheme, developed on the basis of experimental work, achieved copper (28%), lead (40%), and zinc (47%) recovery in the open cycle, while in the closed cycle, 70%, 90%, and 70-80% of the results were recorded, respectively.

Thus, the technology of flotation beneficiation of the ore of the Khandiza deposit is effective, allowing for high metal recovery and efficient industrial development of the deposit.

REFERENCES

1. Khasanov A.S., Sanakulov K.S., Yusupkhodzhaev A.A. Metallurgy of Non-Ferrous Metals. - Tashkent: Fan, 2009. - Б. 19-24.
2. Adamov E.V. Technology of Non-Ferrous Metal Ores. Moscow: MISiS, 2007. - P. 6-10.
3. Nazarov K.K. Beneficiation of Polymetallic Ores. - Tashkent: Fan, 2004. - 280 pages.
4. Abramov A.A. Flotation methods of enrichment. - M.: Nedra, 1994. - 452 p.
5. Kondratyev S.A., Klimov V.A. Collective-selective flotation schemes of sulfide ores. Mining Journal, 2010, No9, pp.42-47
6. Umarova I.K., Salijanova G.Q., Avinjanova S.I. Study on the enrichment of polymetallic ores of the deposit Handiza. Universitas Publishing, Petroşani, 2018. – P.286–306
7. Umarova I.K., Aminjanova S.I. Studying the material composition of the ore of deposit Handiza. Int. scientific conference, Petroşani, 2018. – P.175–178.
8. Abdurahmanov Sh., Rakhimov M. Technology of processing polymetallic ores in Uzbekistan. - Tashkent: Uzbekistan Mining and Metallurgical Academy, 2018. - 256 p.
9. Wills B.A., Finch J.A. *Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery*. 8th Edition. – Oxford: Butterworth-Heinemann (Elsevier), 2016. – 512 p.
10. Fuerstenau M.C., Jameson G.J., Yoon R.H. *Froth Flotation: A Century of Innovation*. – Littleton, Colorado: Society for Mining, Metallurgy & Exploration (SME), 2007. – 891 p.
11. Bulatovic S.M. *Handbook of Flotation Reagents: Chemistry, Theory and Practice. Volume 1: Flotation of Sulfide Ores*. – Amsterdam: Elsevier Science, 2007. – 446 p.
12. Taggart A.F. *Handbook of Mineral Dressing: Ores and Industrial Minerals*. – New York: John Wiley & Sons, 1951. – 1985 p.
13. Toshbekov, O., Urozov, M., Sultonova, F., Raximqulova, S., Mustanova, Z., & Xulkaliyeva, G. (2025, November). Analysis of the thermal conductivity of nonwoven fabrics made from silkworm cocoons and their influence on ambient temperature. In AIP Conference Proceedings (Vol. 3331, No. 1, p. 050005). AIP Publishing <https://doi.org/10.1063/5.0306845>
14. Toshbekov, O., Urazov, M., Yermatov, S., & Khamraeva, M. 2023). Yeffisent and yesonomisal yenergy use teshnology in the prosessing of domestis soarse wool fiber. In Ye3S Web of Sonferenses (Vol. 461, p. 01068). <https://doi.org/10.1051/e3sconf/202346101068>
15. Jumaniyozov, K., Urozov, M., Toshbekov, O., Salimova, M., Raximova, K., & Khursandova, B. (2025, November). Enhancement of energy-efficient cleaning equipment. In American Institute of Physics Conference Series (Vol. 3331, No. 1, p. 050007). <https://doi.org/10.1063/5.0307149>
16. Sultonova, F., Toshbekov, O., Urozov, M., Boymurova, N., Mustanova, Z., & Boltaeva, I. (2025, November). Enhancing and evaluating the characteristics of specialized workwear for employees in the electric power supply sector. In American Institute of Physics Conference Series (Vol. 3331, No. 1, p. 050006). <https://doi.org/10.1063/5.0306350>
17. A. Nomozov, Kh.S. Beknazarov, B.A. Normurodov, Z.Kh. Misirov, S.G. Yuldashova, G.J. Mukimova, D.A. Nabiev, Z. Jumaeva. Inhibition potential of Salsola oppositifolia extract as a green corrosion inhibitor of mild steel in an acidic solution. Int. J. Corros. Scale Inhib., 14(3) (2025) 1103–1115. <https://doi.org/10.17675/2305-6894-2025-14-3-5>
18. Safarov J., Khujakulov A., Sultanova Sh., Khujakulov U., Sunil Verma. Research on energy efficient kinetics of drying raw material. // E3S Web of Conferences: Rudenko International Conference “Methodological problems in reliability study of large energy systems” (RSES 2020). Vol. 216, 2020. P.1-5. doi.org/10.1051/e3sconf/202021601093
19. Safarov J., Sultanova Sh., Dadayev G.T., Zulponov Sh.U. Influence of the structure of coolant flows on the temperature profile by phases in a water heating dryer. // IOP Conf. Series: Materials Science and Engineering. Dynamics of Technical Systems (DTS 2020). Vol.1029, 2021. №012019. P.1-11. doi:10.1088/1757-899X/1029/1/012019
20. Sultanova Sh.A., Artikov A.A., Masharipova Z.A., Abhijit Tarawade, Safarov J.E. Results of experiments conducted in a helio water heating convective drying plant. // International conference AEGIS-2021 «Agricultural Engineering and Green Infrastructure Solutions». IOP Conf. Series: Earth and Environmental Science 868 (2021) 012045. P.1-6. doi:10.1088/1755-1315/868/1/012045

21. Sultanova Sh., Safarov J., Usenov A., Samandarov D., Azimov T. Ultrasonic extraction and determination of flavonoids. XVII International scientific-technical conference “Dynamics of technical systems” (DTS-2021). AIP Conference Proceedings 2507, 050005. 2023. P.1-5. doi.org/10.1063/5.0110524
22. Sultanova Sh., Safarov J., Usenov A., Raxmanova T. Definitions of useful energy and temperature at the outlet of solar collectors. // E3S Web of Conferences: Rudenko International Conference “Methodological problems in reliability study of large energy systems” (RSES 2020). Vol. 216, 2020. P.1-5. doi.org/10.1051/e3sconf/202021601094
23. Usenov A.B., Sultanova Sh.A., Safarov J.E., Azimov A.T. Experimental-statistic modelling of temperature dependence of solubility in the extraction of ocimum basilicum plants. // International conference AEGIS-2021 «Agricultural Engineering and Green Infrastructure Solutions». IOP Conf. Series: Earth and Environmental Science 868 (2021) 012047. P.1-5. doi:10.1088/1755-1315/868/1/012047
24. Baratov, B.N., Umarov, F.Y., Toshov, Z.H. Tricone drill bit performance evaluation. Gornyi Zhurnal, Moscow, 2021. - № 12. - PP. 60-63. DOI:10.17580/gzh.2021.12.11.
25. Toshov, J.B., Toshov, B.R., Baratov, B.N., Haqberdiyev, A.L. Designing new generation drill bits with optimal axial eccentricity | Вопросы проектирования буровых долот нового поколения с оптимальным межосевым эксцентрикитетом // Mining Informational and Analytical Bulletin, 2022, (9). - PP. 133–142. DOI: 10.25018/0236_1493_2022_9_0_133
26. Toshov J., Makhmudov A., Kurbonov O., Arzikulov G., Makhmudova G. Development and Substantiation of Energy-Saving Methods for Controlling the Modes of Operation of Centrifugal Pumping Units in Complicated Operating Conditions. Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023, Koethen, Germany. – PP. 161-165.
27. J.B. Toshov, K.T. Sherov, B.N. Absadykov, R.U. Djuraev, M.R. Sakhimbayev, Efficiency of drilling wells with air purge based on the use of a vortex tube. NEWS of the National Academy of Sciences of the Republic of Kazakhstan “Series of geology and technical sciences”. – Almaty, Volume 4, Number 460 (2023), 225–235. <https://doi.org/10.32014/2023.2518-170X.331> Toshov J., Toshov B., Bainazov U., Elemonov M. Application of Cycle-Flow Technology in Coal Mines. Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023, Koethen, Germany. – PP. 279-284.
28. Usmanov, E., Kholikhamatov, B., Rikhsitillaev, B., Nimatov, K. Device for reducing asymmetry // E3s Web of Conferences 461. 2023. PP, 01052, 1-5. <https://doi.org/10.1051/e3sconf/202346101052>
29. Toshov B., Toshov J., Akhmedova L., Baratov B. The new design scheme of drilling rock cutting tools, working in rotation mode pairs. E3S Web of Conferences 383, 04069 (2023) TT21C-2023 <https://doi.org/10.1051/e3sconf/202338304069>
30. J.B. Toshev, M.B. Norkulov, A.A. Urazimbetova and L.G. Toshniyozov. Optimization of scheme of placing cutting structures on the cone drill bit. E3S Web of Conf., Volume 402, 10039 (2023), International Scientific Siberian Transport Forum - TransSiberia 2023, <https://doi.org/10.1051/e3sconf/202340210039>
31. Toshov J., Baratov B., Sherov K., Mussayev M., Baymirzaev B., Esirkepov A., Ismailov G., Abdugaliyeva G., Burieva J. Ways to Optimize the Kinetic Parameters of Tricone Drill Bits. Material and Mechanical Engineering Technology, №1, 2024, 35-45. https://doi.org/10.52209/2706-977X_2024_1_35
32. K.T. Sherov, N.Zh. Karsakova, B.N. Absadykov, J.B. Toshov, M.R. Sakhimbayev, Studying the effect of the boring bar amplitude-frequency characteristics on the accuracy of machining a large-sized part. NEWS of the National Academy of Sciences of the Republic of Kazakhstan “SERIES OF GEOLOGY AND TECHNICAL SCIENCES”. – Almaty, Volume 2, Number 464 (2024), 217–227. <https://doi.org/10.32014/2024.2518-170X.405>
33. Akbar, K., Javokhir, T., Lazizjon, A., Umidjon, K., Muhammad, I., Improvement of soft-start method for high-voltage and high-power asynchronous electric drives of pumping plants. AIP Conf. Proc. 3152, 040006 (2024) / III International Scientific and Technical Conference “Actual issues of Power supply systems” (ICAIPSS2023), 7–8 September 2023, Tashkent, Uzbekistan. <https://doi.org/10.1063/5.0218899>
34. J. Toshov, L. Atakulov, G. Arzikulov, U. Baynazarov, Modeling of optimal operating conditions of cyclic-flow technologies with a belt conveyor at coal mine under the “ANSYS” program. AIP Conf. Proc. 3152, 020006 (2024) / III International Scientific and Technical Conference “Actual issues of Power supply systems” (ICAIPSS2023), 7–8 September 2023, Tashkent, Uzbekistan. <https://doi.org/10.1063/5.0218904>
35. Kholikhamatov B.B., Samiev Sh.S., Erejepov M.T., Nematov L.A. Modelling of laboratory work in the science "Fundamentals of power supply" using an educational simulator based on a programmed logic controller // E3S Web of Conferences 384. 2023. PP, 01032, 1-3. <https://doi.org/10.1051/e3sconf/202338401032>

36. Rakhimov F, Rakhimov F, Samiev Sh, Abdukhalilov D. Justification of Technical and Economic Effectiveness of Application of 20 kV Voltage in Overhead Electric Networks //AIP Conf. Proc. 3152, 030023 (2024). <https://doi.org/10.1063/5.0218921>
37. Taslimov A, Mo'minov V, Samiev Sh, Abdukhalilov D. Issues of Optimization of Electrical Network Parameters Medium Voltage //AIP Conf. Proc. 3331, 020007 (2025). <https://doi.org/10.1063/5.0305781>
38. Toshbekov, O., Urazov, M., Yermatov, S., & Khamraeva, M. 2023). Yeffisent and yesonomisal yenergy use teshnology in the prosessing of domestis soarse wool fiber. In Ye3S Web of Sonferenses (Vol. 461, p. 01068). <https://doi.org/10.1051/e3sconf/202346101068>
39. Jumaniyozov, K., Urozov, M., Toshbekov, O., Salimova, M., Raximova, K., & Khursandova, B. (2025, November). Enhancement of energy-efficient cleaning equipment. In American Institute of Physics Conference Series (Vol. 3331, No. 1, p. 050007). <https://doi.org/10.1063/5.0307149>
40. Sultonova, F., Toshbekov, O., Urozov, M., Boymurova, N., Mustanova, Z., & Boltaeva, I. (2025, November). Enhancing and evaluating the characteristics of specialized workwear for employees in the electric power supply sector. In American Institute of Physics Conference Series (Vol. 3331, No. 1, p. 050006). <https://doi.org/10.1063/5.0306350>