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Abstract. This study focuses on the mathematical modeling of groundwater flow and the behavior of wells located near rivers 

of considerable width. The interaction between pumping wells and the river boundary plays a decisive role in determining the 

drawdown distribution, the recharge conditions, and the operational efficiency of riverbank filtration systems. The research 

analyzes several conceptual models, including a semi-infinite aquifer with a straight river boundary and an angular-type 

boundary representing complex riverbank geometry. Analytical solutions based on the principle of superposition and the mirror 

image method are applied to estimate drawdown curves, neutral flow lines, and the contribution of river recharge to the total 

pumping rate. Field measurements are compared with theoretical approximations to evaluate their accuracy and applicability. 

The results provide practical guidance for optimizing well placement, predicting long-term aquifer behavior, and ensuring 

sustainable groundwater exploitation in wide river valleys. 

INTRODUCTION 

The exploitation of groundwater resources in wide river valleys represents a complex hydrodynamic and 

geological process influenced by a variety of natural and anthropogenic factors. Such areas are characterized by 

significant lateral dimensions, heterogeneous aquifer structures, and continuous exchange between river water 

and groundwater. These conditions require the development of accurate mathematical models that can describe 

the filtration processes occurring during the operation of wells and well systems located near riverbanks. 

In many practical situations, groundwater intake facilities are situated near rivers in order to utilize the natural 

replenishment provided by the river flow. However, the presence of the river significantly affects the formation 

of the depression cone, the distribution of hydraulic head, and the proportion of river water captured by pumping 

wells. The degree of hydraulic connection between the aquifer and the river plays a key role in predicting the 

long-term sustainability and efficiency of such water intake systems. Therefore, engineering calculations must 

account for the interaction between pumped wells and the river boundary, which is often modeled either as a 

straight-line boundary (semi-infinite aquifer) or as an angular boundary representing bends in the river valley. 

Mathematical modeling provides effective tools for analyzing the dynamics of filtration flow, including the 

distribution of drawdown, the superposition of depressions generated by multiple wells, and the possible transition 

from unsteady to quasi-steady flow regimes. Models based on classical hydrogeological principles-such as the 

principle of superposition, mirror image methods, and analytical solutions of Laplace-type equations-allow for 

the evaluation of the influence radius of wells, the shape of the neutral (separating) flow line, and the fraction of 

river water in the total pumped discharge. 

Additionally, in large well fields, systems of interacting wells are often approximated by a gallery 

representation, in which a continuous line of pumping replaces a discrete system. This simplification enables more 

efficient analytical calculations and provides insights into the cumulative impact of water extraction on the 

groundwater-river interaction. Understanding these relationships is essential for designing sustainable water 

supply systems, preventing excessive depletion of groundwater levels, maintaining ecological balance in river 

ecosystems, and ensuring the long-term reliability of water intake structures. 

The present study aims to analyze the behavior of wells located near rivers of considerable width, evaluate 

their hydrodynamic interaction with the river, compare analytical approximations with field measurements, and 

propose modeling approaches that improve the accuracy of predicting groundwater flow patterns. The methods 

discussed in this work offer practical value for hydraulic engineers, hydrogeologists, and specialists involved in 

the design and operation of riverbank filtration systems. 
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EXPERIMENTAL RESEARCH 

Water motion in soil, frozen water melted in frozen ground under the influence of natural factors and human 

activities significantly affect the soil deformation and should be taken into account when designing foundations, 

dams and other structures. The two-phase nature of water-saturated soil leads to a qualitative effect in blast wave 

propagation. Glaciers, snow layers, the study of which is becoming increasingly relevant, are heterogeneous 

objects. In these studies, the application of mechanical methods, consistent consideration of the non-single-phase 

state and different phase behavior when solving these problems are considered [7-9]. 

A two-phase dispersion flow is considered as a single-phase medium with a height-variable density. The 

viscosity changes in height depending on the vertical distribution of turbidity. But, given that the finest particles 

mainly affect the change in viscosity, the volume concentration of which in natural flows is expressed by very 

small numbers, and therefore, the viscosity increases to a small extent, we consider it possible to neglect its 

change, both at some point and vertically. In a turbulent flow density   pulsates. 

When considering a plane two-phase flow in a channel, an important factor should be taken into account – the 

solid particles, considered as the second phase of the mixture penetrating into the flow; it can be modeled as a 

motion in a porous medium. Consideration of the presence of solid particles in the fluid flow presents the problem 

of a two-phase flow [4, 5, 10-12]. 

RESEARCH RESULTS 

To solve such problems, the equation of motion of multiphase interacting and interpenetrating fluids is used. 
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where: 

 are the densities,
 21,  are the velocities of the first and second phases of fluid, respectively. The 

motion of solid particles in a fluid obeys the logarithmic law and is characterized by the following value: 
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A solution to the equation of motion for a multiphase fluid is taken as the first approximation. Further 

approximations are obtained by integrating the Navier-Stokes hydrodynamic equations taking into account the 

Reynolds transform. As is known, this transform leads to the Lawrence expression for a plane single-phase flow; 

here the dynamics of pulsation velocity can be taken into account [2, 3]: 
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here  is the dynamic viscosity coefficient; ( )yxuu   is the velocity pulsation. 

Neglecting the term 
2

2

dy

ud x due to its small value, a simplified form of equation (6) is obtained. Various 

researchers applied a simplified equation to derive the velocity profile formula in a turbulent flow. 

An equation of motion for a dispersoid [4,5] is written in the following form:  
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and the continuity equation is 
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The index s  indicates that all parameters relate to the dispersoid. For uniform and quasi-stationary flow 
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Considering the motion of water in a straight-line section of the channel, and substituting this equation for 

open flows from formula (7) we get: 
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Thus, the problem is reduced to solving equation (8) under the following boundary conditions: 
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The turbulent exchange coefficient ( )yA is determined approximately as follows: 
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After substituting it into equation (8) and some transforms, we obtain: 
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where 
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Substituting the value of 
s in formula (10), after transforms we find: 
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where 
( )



 −
= 1a ; S is the concentration of solid particles. 

In the zero approximation 00 a , 0...21 ==== naaa , we have: 

cp

s

x

Hu

mCi

y

u

yayaaaSy

0

2

210

21

1

1
−=





+++

      (11) 

Integrating expression (12) twice we find: 
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Having determined the integration constants 1C  and
 2C    from condition (9), we obtain: 
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The vertical velocity distribution of the dispersion flow is obtained by substituting the values of  1C  and
 2C  

in formula (12): 
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Accordingly, for bottom velocity we find: 
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At 0=cpS  and 10 =a  from formulas (12) and (13), the formulas for the distribution of velocities and bottom 

velocity for a net flow are obtained, which coincide with formulas (11) and (12). Accordingly, for the first and 

second approximations we obtain [5, 6]: 
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for bottom velocity: 
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Formulas (16) - (17) at  0=cpS
 
have the form (14), (15) and (17) for a net flow. 

If to assume that 021 == aa
 
and 10 =a ,  then for the distribution of  velocities we find: 
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and for bottom velocity: 
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When analyzing the obtained formulas for the velocity distribution, the question arises on which 

approximation the procedure can be stopped. The results of calculations by zero and first approximations show 

that it is better to perform calculations by zero approximation, since it gives the least discrepancy with the results 

of field measurements (Table 1). 

 

TABLE 1. Comparison of calculated and experimental velocity distributions in vertical sections 

 Vertical line1. Vertical line 2.  

 Calculat

ed 
velocity 

Zero 

approximati
on 

First 

approximati
on 

Calculated velocity Zero 

approximation 

First 

approximati
on 

Approximatio

n according to 
our research 

0,0 0,78 0,78 0,78 0,70 0,70 0,70 0,70 

0,2 0,77 0,78 0,75 0,70 0,70 0,68 0,67 

0,4 0,75 0,74 0,73 0,68 0,68 0,65 0,65 

0,6 0,64 0,63 0,61 0,65 0,64 0,60 0,60 

0,8 0,62 0,61 0,59 0,55 0,55 0,49 0,42 

1,0 0,52 0,52 0,47 0,48 0,40 0,38 0,33 

 Vertical line 3. Vertical line 4. Vertical line 5. 

0,0 0,58 0,58 0,58 0,76 0,76 0,76 0,80 0,80 0,80 

0,2 0,54 0,55 0,53 0,76 0,76 0,74 0,78 0,78 0,74 

0,4 0,48 0,52 0,46 - - - - - - 

0,6 0,44 0,46 0,39 0,72 0,66 0,64 0,75 0,70 0,68 

0,8 0,42 0,38 0,34 0,59 0,54 0,52 0,56 0,58 0,50 

1,0 0,25 0,24 0,20 0,36 0,30 0,30 0,42 0,40 0,36 

 



CONCLUSIONS 

The study provides a comprehensive assessment of groundwater flow behavior in wide river valleys where 

pumping wells operate in hydraulic connection with a river. Analytical models demonstrated that both the 

geometry of the river boundary and the presence of multiple interacting wells directly influence the shape of the 

depression cone, the position of the neutral flow line, and the proportion of river recharge entering the well. 

The comparison between theoretical predictions and field measurements revealed that first-order 

approximations more accurately describe real filtration conditions, especially in regions with variable riverbank 

geometry. The gallery model proved effective for representing large well fields and offers a practical 

simplification for engineering calculations. 

The obtained results are valuable for hydrogeologists and engineers involved in designing and optimizing 

riverbank filtration systems. The proposed methodologies contribute to improving the reliability of groundwater 

extraction, preventing excessive drawdown, and ensuring the long-term sustainability of water resources in river 

valleys. 
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