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Abstract. Large pumping stations incorporating synchronous motors with powers reaching several tens of megawatts can 

be used as reactive power compensators in electrical systems and minimize energy losses in networks. The method 

described in the article can be used in systems for automatic control of the excitation of large synchronous motors. 

INTRODUCTION 

The practice of operating electrical systems (ES) shows that if they include large pumping stations equipped with 

powerful synchronous motors (SM), they are taken into account as a constant load. At the same time, taking into 

account the regime properties of large SDs will improve the operating conditions of the ES, reduce losses in the system 

and increase its controllability. It all depends on the rational use of automatic excitation control (AEC) of the engine. 

 It is known [1] that in the case of a lack of reactive power in the electrical system, there may be a loss of operation 

stability not only of the engine itself, but of the entire load node. AEC changes the amount of reactive power output 

by the engine according to a certain law, depending on the size and nature of the load, as well as on the mode of the 

supply network, and maintains the voltage values at the SM connection point [4]. 

The paper describes a method for automatic control of the excitation current of a synchronous electric motor in 

post-emergency modes of the power system. The essence of the method lies in the fact that in the post-emergency 

modes of the power system, the value of cosφ of the motor, the current value of its load angle are measured and the 

value of cosφ is maintained at a level of about 1.0 by changing the setting value of the excitation current control loop 

in the appropriate direction according to the voltage deviation of the stator circuit, carried out according to 

proportional-differential law. The disadvantage of this approach is that in order to limit the maximum allowable value 

of the rotor current, the temperature of its winding is continuously monitored by indirectly measuring the active 

resistance of the winding [1,2]. 

EXPERIMENTAL RESEARCH 

A device is described that contains voltage and current meters of the stator of a synchronous motor, an angle φ 

meter, a rotor current meter, an amplifier, and a phase-pulse device. The disadvantages of this method include 

insufficiently effective damping of oscillations that occur with changes in the load and mains voltage, as well as 

insufficient static stability of the motor [3,4]. 

A model of a fuzzy controller is presented, the output of which is connected to the input of a PID controller that 

performs fuzzy control in order to minimize energy losses in the electrical network. Here, the disadvantage is the 

selected control parameter in the form of a deviation of the rotor speed of the synchronous motor, which cannot 

sufficiently minimize energy losses without controlling the level of reactive power in the load node [5,6]. 

The essence of the proposed control approach is illustrated in Figure 1, depicting a functional diagram of a 

synchronous motor powered by the network, implementing the proposed excitation control approach. 
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FIGURE 1. Fuzzy Logic Controller Structure 

 

The objective of the proposed approach is to maintain the maximum value of cosφ of the load node in order to 

minimize energy losses in the network. The task is achieved by the fact that stabilization signals for the deviation of 

cosφ and reactive power in the load node are introduced into the system for controlling the excitation of a synchronous 

motor, which is a controller based on fuzzy logic [7,8,9]. 
 

 
FIGURE 2. Functional diagram of excitation control of a synchronous motor of a pumping station 

 

The excitation control circuit of a synchronous motor (Fig. 2) contains a synchronous motor 1 connected to a three-

phase electrical network, a measuring part 4 (IC) connected to one of the phase terminals of the stator winding 2 and 

neutral N of the synchronous motor 1, while the outputs of the measuring part 4 (IC) are the inputs of the adder 5, 

which in turn is connected to the fuzzy logic controller 6, the output of which is connected to the adder 7, the output 

of which is connected to the protection unit 8 (BZ) connected to the excitation winding 3 of the synchronous motor 

[10,11,12]  

RESEARCH RESULTS 

The excitation control of a synchronous motor is implemented as follows. 

The measuring part 4 (IC) connected to the output of the stator winding 2 and neutral N of the synchronous motor 

1 is designed to measure and convert the control parameter - cosφ. The signal of the measured cosφfact is fed to the 

input of the adder 5, in which it is compared with the specified setting cosφref and an error signal e=cosφref – cosφfact 

is generated, which, together with the signal of the pre-measured value of the reactive power Qload consumed in the 

node, is fed to the input of the fuzzy logic controller 6. The fuzzy controller logic 6 is a non-linear control system that 

uses accurate input variables in the form of an error signal e and reactive power consumption in the node Qload and, in 

accordance with the rule base, generates a control variable in the form of a signal for changing the excitation voltage 
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ΔUf. The output signal ΔUf from the fuzzy logic controller 6 is fed to the input of the adder 7, where it is added to the 

excitation voltage setting ΔUf_ref and forms the output signal Uf, which is fed to the input of the protection unit 8 

(BZ), designed to limit the increased voltage and overload current supplied to the excitation winding 3 synchronous 

motors 1 [13,14,15,16]. 

Figure 2 shows the membership functions of the input parameters - changes in cosφ in the form of an error signal 

e (Fig. 2, a) and the level of reactive power consumption in the Qload node (Fig. 2, b), as well as the output parameter 

- excitation voltage Uf (Fig. .2, c). 
 

 
e (error signal of cosφ deviation from the setpoint) 

a) 
 

 
Qload (value of reactive power consumed in the load node) 

b) 
 

 
Uf (excitation voltage change)  

s) 

Fig. 1. Membership functions of input and output parameters 

 

The fuzzy controller functions based on the rule base shown in Table 1, where the following notations are used: 

NB (negative large), NS (negative small), Z (zero), PS (positive small), and PB (positive large). 
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TABLE 1. Parameters of synchronous generators. 

Error signal (e) 
The value of reactive power consumption in the load node (Qload) 

NB NS Z PS PB 

NB NB NB NB NS Z 

NS NB NB NS Z PS 

Z NB NS Z PS PB 

PS NS Z PS PB PB 

PB Z PS PB PB PB 

 

As an example of the implementation of the proposed method for controlling the excitation of synchronous motors 

of pumping stations using the Matlab software package from The MathWorks Inc, the circuit shown in Fig. 1 was 

simulated. Synchronous motor parameters: rated active power 800 kW; nominal power factor 0.85; rated voltage 10 

kV; nominal number of revolutions 1000; starting current ratio 7; Efficiency - 0.94. 

We will simulate the connection of a large asynchronous load to the connection node of a synchronous motor at 

the 2nd second of the simulation. The cosφ setpoint of the fuzzy controller is set to 0.85. 

Figures 3 and 5 show graphs of the transient change in cosφ in the load node, torque and voltage of the synchronous 

motor. The curve of change in the moment of a synchronous machine under external disturbance indicates the 

preservation of stable synchronous operation of the motor [18,19,20] 
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FIGURE 3. Changing torque and voltage synchronous 

 

Thus, a synchronous motor equipped with a fuzzy controller as an AEC system is able to maintain cosφ by 

controlling the level of reactive power in the node. The described approach to controlling the excitation of synchronous 

motors of pumping stations ensures that the maximum value of cosφ is maintained in order to minimize energy losses 

in the network when the load changes in the connected node. Large pumping stations incorporating synchronous 

motors with power reaching several tens of megawatts can be used as reactive power compensators for load nodes to 

ensure minimization of energy losses in networks. 

CONCLUSIONS 

Thus, a synchronous motor equipped with a fuzzy controller as an AEC system is able to maintain cosφ by 

controlling the level of reactive power in the node. The described approach to controlling the excitation of synchronous 

motors of pumping stations ensures that the maximum value of cosφ is maintained in order to minimize energy losses 

in the network when the load changes in the connected node. Large pumping stations incorporating synchronous 

motors with power reaching several tens of megawatts can be used as reactive power compensators for load nodes to 

ensure minimization of energy losses in networks. 
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