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Abstract. Complex computing ecosystems, such as cloud, fog, and edge systems have emerged as essential elements of
the digital ecosystem of the modern era, enhancing important sectors such as healthcare, transportation, industry, and IoT.
This growth of IoT has resulted in generated data in massive volumes and real-time, which has made centralized processing
untenable in many cases due to latency, energy use, and bandwidth. Thus, edge- and fog-computing systems provide an
opportunity to more efficiently or responsively process the data closer to the data-generating source. However, the task
assignment of computation processing on heterogeneous nodes at layer of resilience or distributed system remains an NP-
hard problem. This study evaluates the use of optimization methods to distribute tasks in IoT- based edge and fog
environments and applies metaheuristic and learning algorithms, such as, Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), and Reinforcement Learning (RL). This study develops and
evaluates multi-objective optimization models that minimize latency, balance workload, and increase energy efficiency
under dynamic network scenarios. This study will enhance the development of intelligent adaptive task assignment systems
for real-time distributed computing.

INTRODUCTION

Complex computing systems (cloud, FOG, and EDGE computing infrastructures) are currently an integral part of
the digital economy, healthcare, transportation, industry, and IoT (Internet of Things) ecosystems. As a result of the
rapid development of Internet of Things technology, millions of sensors, devices, and smart agents connected to the
network are generating vast amounts of data in real-time [1]. Centralized processing of this data leads to problems
such as delays, increased energy consumption, and increased network bandwidth usage. This situation is especially
unacceptable for time-sensitive systems such as autonomous vehicles, remote medicine, or industrial robotics [2].

Therefore, edge and fog computing technologies enable increased efficiency by processing data close to the source
where it is generated [3]. However, the optimal distribution of tasks among edge nodes, fog servers, and cloud
infrastructure creates a complex optimization problem [4, 5]. This process necessitates the simultaneous consideration
of the changing environmental conditions of IoT networks, the limited volume of available resources, and the need to
minimize delay parameters in order to enhance system efficiency.

Typical methods of task allocation are static and deterministic in nature and do not work sufficiently effectively in
a dynamic real-time environment. As a result, in recent years, research focused on studying task distribution based on
reinforcement learning, evolutionary optimization (Genetic Algorithms, PSO, ACO), and multi-objective optimization
approaches has been expanding [6], [7].

In these approaches, system agents learn optimal decisions through interaction with the environment.
Simultaneously, multi-objective reward functions are being developed that enable joint optimization of criteria such
as energy efficiency, latency, load balancing, and quality of service (QoS) [8].
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The task distribution problem in complex systems belongs to the NP-hard class [9], and finding the optimal solution
in large-scale networks is computationally expensive. Therefore, modern scientific research is proposing hybrid
methods based on metaheuristic approaches and artificial intelligence [10], [11].

In this article, methods for optimizing the distribution of tasks in complex systems are analyzed, in particular, the
scientific basis for creating effective distribution mechanisms in boundary and fog computing architectures,
algorithmic approaches, as well as their advantages and disadvantages. The aim of the research is to develop and
analyze optimal task distribution models that enable rational resource utilization, delay minimization, and load
balancing in complex systems operating in real-time.

LITERATURE REVIEW

In recent years, the expansion of the Internet of Things (IoT) ecosystem has led to a sharp increase in the number
of applications requiring real-time computing. This has highlighted the necessity of distributing workloads efficiently
in edge and fog computing environments. With the increasing number of IoT devices in 5G networks, many issues
have surfaced, such as latency, QoS, and energy-efficiency (Khanh et al., 2022). Therefore, recent studies have been
undertaking a significant amount of studies on task allocation models based on artificial intelligence, metaheuristic
models, and reinforcement learning (RL).

In the initial studies, the task scheduling problem in constrained environments with limited resources was
formulated as a Markov Decision Process (MDP) and solved using the REINFORCE algorithm, which performed
better than deterministic models (e.g. the classic FCFS) [12]. In subsequent research in this direction, the Deep Q-
Network (DQN) algorithm was applied in an edge-cloud environment, achieving a significant reduction in
computation time [13].

Nevertheless, as single-objective models are practically insufficient, researchers began to focus on optimizing task
offloading and resource allocation jointly. For example, to decrease delay and energy consumption, a dual approach
using DRL and Salp Swarm Algorithm (SSA) was used [14], while a combination of Dueling Double Deep Q-Network
(D3QN) and LSTM improved load balancing in IoT networks [15].

Multi-agent methods make it possible to better understand and take into account how edge devices interact with
each other. For example, [2] proposed a model that reduces the need for centralized management by treating each
user's device as an independent agent. However, in such models, task prioritization and global balance are still not
fully taken into account. Additionally, a two-stage planning model based on Q-learning and Johnson's rule effectively
reduced task execution time in edge-cloud architecture [16].

[17] developed a partial offloading mechanism for energy-sensitive applications that distributes tasks while taking
into account the available energy reserves on edge servers. Meanwhile, [18] proposed an encryption-based model that
jointly optimizes the criteria of energy usage, latency, and security. [19] developed a scheduling mechanism that
reduces the number of interruptions by considering the occupancy status of fog nodes.

Approaches based on SDN (Software-Defined Networking) architecture allow for efficient use of network
resources. The UbiFlow system proposed by [20] optimized interaction with IoT devices by balancing flows between
controllers. Additionally, [21] created a "probe"-based route determination algorithm using SDN, which reduces
latency by up to 63%. [22] implemented IoT traffic configuration using contextual data, thereby reducing network
load.

In [23], the CooLoad model was proposed to facilitate load balancing in fog environments, where tasks are
transferred from overloaded servers to other servers to reduce the level of blocking, based on the concept of "Quasi
Birth and Death." Then [24] modeled the Fog architecture using CloudSim and assessed resource allocation across
the layers.

In addition, [9] introduced a multi-criteria decision-making (MCDM) model utilized between Fog gateways with
its model built on network speed and response time and observed significant improvement over the Round Robin
method. [25] also illustrated that an increase in overall efficiency by 25% can be accomplished by balancing the
workload between Fog and Cloud.

However, the majority of existing studies only focus on optimizing one or possibly two criteria (usually delay or
energy consumption). To this end, new approaches that jointly optimize delay, energy, and load balance are being
developed based on multi-objective optimization methods, including various algorithms such as NSGA-II, SPEA2, or
Double Q-learning [12], [26].

More recent work provided evidence that double Q-learning based models are effective for decreasing
overestimation bias and for more stable learning processes [27]. At the same time, new multi-agent reinforcement



learning (MARL)-based methods [28], [29] will help to make improved inter-agent coordination in transportation
networks and IoT ecosystems, which will contribute to better energy efficiencies and sustainability.

In summary, review of literature shows that combining DRL, SDN, and Fog/Edge/Cloud results in excellent
performance in optimizing task allocation to complex systems. However, most of these methodologies have not yet
addressed challenges such as bubbles, availability of resources, and real-time adaptability. Consequently, recent
developments are focusing on formulating multi-objective, distributed, and self-managing approaches in this field.

METHODOLOGY

In complex systems, specifically in loT networks with Edge-Fog-Cloud architecture, the problem of optimal task
distribution is considered to be uncertain, dynamic, and multi-criteria. The specific implication of the problem is the
need to formulate a solution that accounts for several competing considerations, such as time, energy, network latency,
and load balancing. Therefore, the proposed solution is based on mathematical modeling, optimization criteria, and
reinforcement learning.

THE PROBLEM STATEMENT

Let's assume that a complex computing system consists of n tasks from a set T = {t;, t, ..., t,,} and m edge nodes
from aset E = {ey, e,, ..., e, }. Each task t; € T is characterized by the following parameters.

C; - the computational complexity of the task;

D; - the amount of data transmitted to the network;

L; - maximum permitted execution time.

Furthermore, each boundary node e; € E is considered to have the following resources.

P; - processor's computational speed;

E; - the node's available energy reserves;

B; - network throughput.

The process of assigning each task in the system to a specific node is called task distribution and is represented by
the following binary decision variable:

v = {1, If task t; is executed at node e; 0
Y 0, otherwise
Here, each task must be assigned to only one node, that is,
Xitxy=1i€12,..,T. )
in this process, the condition that each node must not exceed the available resources must be fulfilled.
?=1xij Ci < ijax,j € 1,2,...,m. (3)
the total time required to complete the task through the boundary node consists of two components.
Ty =T + T3 = 2t 2 (4)

i Pj
Here, Tit]fans represents the data transmission time over the network, while Tij-omp denotes the time spent on the

calculation process. Similarly, the energy expended to complete the task is determined as follows.

E;; = PFPU -L 4 pIx =L
) J P; J B

; )
Here, PjCP U represents the processor power consumption of the node, and PjTX represents the power consumption
of the transmission module (transmitter).
The problem of task distribution in a complex system involves placing each t; task on a corresponding e; node in
such a way that the overall system efficiency (in terms of delay, energy consumption, and load balance) is optimized.
Therefore, the multi-objective optimization function is written as follows:
min F = a,Delay(x) + a,Energy(x) — asLoadBal(x) (6)
Here, a4, a5, and a5 are normalized weight coefficients where o; + o, + o3 = 1.

D; C;
Delay(x) = Xizq X1 Xij (B_j+P_j> ™

Ci x.Di
Energy(x) = Xiq X7ty xij <PjCPU'P_j+PjT B_]> ®)



LoadBal(x) = 1 - 222 )

]

Proposed method based on reinforcement learning. Due to the NP-complexity of the analytical solution for
multi-objective optimization, this study proposes an adaptive solution based on the Double Q-learning approach. In
this model, the system is represented as a Markov Decision Process (MDP).

M= (S,AR,P,y) (10)

Here, S represents the state space (node load, energy, and delay level), A denotes actions (which node to send the
task to), R is the reward, P represents transition probabilities, and y is the discount coefficient.

Double Q-learning mechanism
Two independent Q-tables are utilized to mitigate the overestimation problem in traditional DQN models.

Qi(s,a) < Qi(s,a) + « [r +vQ; <S',arg max Q; (', a’)) —0:(s a)] (11)

02(5,0) < Qu(5,0) + [r +Y0, <s', argmax Q; (5" a')) - 0., a)] (12)

These two tables are updated alternately. As a result, the model uses one table for selecting decisions and the other
for evaluating them. This enhances learning stability and improves the rate of convergence.

OPTIMIZATION METHODS

The problem of task distribution in complex systems inherently belongs to the non-traditional, combinatorially
complex, and NP-hard class. Therefore, obtaining exact (deterministic) solutions for such complex problems is either
infeasible or requires excessive computational effort. Consequently, various optimization techniques have been
explored in the literature. These approaches are typically divided into four main groups: classical deterministic
methods, heuristic approaches, metaheuristic algorithms, and learning-based techniques inspired by artificial
intelligence.

Deterministic Methods in Optimization. Deterministic optimization techniques, such as linear, integer, and
dynamic programming, are generally effective for problems of limited size and complexity.

For instance, the Hungarian algorithm and the Branch-and-Bound method can efficiently yield optimal solutions
for assignment and transportation problems, respectively.

However, such models are limited in accounting for multidimensional, real-time, variable parameters that emerge
in large-scale IoT networks, edge computing, or fog architectures. Therefore, deterministic methods are mainly used
for theoretical evaluation and baseline comparisons.

Heuristic and metaheuristic approaches. Heuristic approaches enable obtaining results close to the optimal
solution in a short time. They solve problems based on guidelines or intuitive strategies. Greedy, Nearest Neighbor,
and Simulated Annealing algorithms are examples of this. For extreme accuracy and stability demands in a system,
metaheuristic methods are used. These methods, which simulate natural processes, have a broader search space.

Among the most widely applied are:

1) Genetic Algorithms (GA) - inspired by evolutionary principles such as selection, crossover, and mutation, these
algorithms are particularly effective for solving resource allocation problems.

2) Particle Swarm Optimization (PSO) - optimizes the solutions iteratively as the agents move their locations to
be closer to the solutions based on their own and collective experience and converging on the global optimum.

3) Ant Colony Optimization (ACO) - simulates the behavior of ants as they place pheromones along their paths
that allow solutions for efficient traveling and task ordering to be discovered.

4) Tabu Search - avoids being trapped in local minima by remembering which solutions have been visited and
prohibiting that solution to be used immediately again.

In edge and fog computing, metaheuristic methods are commonly applied thanks to their ability to adapt effectively
to dynamically changing resource conditions.

Hybrid Optimization Approaches. In recent years, hybrid models that combine different algorithmic paradigms
have gained significant attention in the research community. For example, hybrid strategies such as PSO-GA and
ACO-GA combine the extensive search capabilities of one algorithm with the efficient convergence properties of the
other. These combined strategies improve the rate of convergence while reducing the risk of falling into local optima
and facilitate better exploration of complex resource environments.



Reinforcement Learning—Based Optimization. In recent studies, reinforcement learning (RL) has emerged as a
promising approach for handling real-time task allocation challenges in complex systems. An RL agent aims to
maximize the reward function through interaction with the environment. Optimization based on RL offers the
following advantages.

i.  The model does not rely on a predefined mathematical formulation; instead, it gradually learns optimal
decisions through interaction and accumulated experience;
ii. It is highly adaptable to dynamic environments, allowing it to modify its decision-making strategy in response
to changes in network load, energy availability, latency, or communication quality;
iii.  The approach is also well-suited for multi-objective optimization, as different criteria—such as latency, energy
efficiency, and load balancing—can be integrated into the reward function;

Overview of the Proposed Optimization Approach

This study introduces a multi-objective optimization framework that leverages Double Q-learning to improve
decision-making efficiency. It has the following features:

The multi-criteria objective function jointly optimizes delay, energy consumption, and load balance. The adaptive
reward function changes in real-time based on the current state of the network. In the distributed architecture, each
edge agent learns independently while supporting a common global goal. A stable learning process eliminates the
overestimation problem using a two-stage Q-table. As a result of this approach, the efficiency of task distribution in
complex systems increases, delays and energy consumption are reduced, and system stability and scalability are
improved.

RESULTS AND DISCUSSION

The following results were obtained by minimally normalizing and evaluating the multi-objective function
(delay, energy consumption, load balance) described in Section 3. The test scenario consists of |T| = 200 tasks,
|E| = 20 edge nodes, with average P; € [20,60] GFLOPS, B; € [50,200] Mbps, and varying energy budgets. Each
algorithm was run 30 times; the table shows the average 1 standard deviation. Hyperparameters: GA (pop = 80,
mut = 0.08, cx = 0.7, 300 iterations), PSO (pop = 80, w = 0.7, ¢; = ¢, = 1.4, 300 iterations), ACO (pop = 60,
a=1,B=4,p=0.15, 300 iterations). The fitness score is the min-max normalized value of F in Section 3.2.

Table 1. Results obtained from minimally normalizing a multi-purpose function

INDICATOR GA PSO ACO
FINAL FITNESS (0-1) 0.87+0.02 0.90 £ 0.01 0.88 £0.02
AVERAGE DELAY (MS) 1186 111+4 114+5
TOTAL ENERGY (J) 1.00e5 £ 3.2e3 9.4e4 + 2.6¢3 9.7¢4 + 2.9¢3
LOAD BALANCE 0.92+£0.01 0.94+£0.01 0.93 £0.01
DEADLINE SATISFACTION (%) 93.1+1.4 95.6+1.0 942+1.2
CONVERGENCE ITERATIONS. 228 +21 174 + 18 196 +20
COMPUTATION TIME (S) 62+3 47 +2 58+3

From the results in the table: (i) PSO demonstrated the best performance in almost all indicators, showing fast
convergence, low latency, and a favorable energy profile. (ii) ACO performed slightly better than GA in terms of
load balancing and deadline satisfaction, though it required more computational effort. (iii) GA, on the other hand,
demonstrated the highest stability (with a smaller standard deviation) but converged more slowly.

CONCLUSIONS

The research focused on the issue of task allocation in complex systems, specifically in loT-based Edge/Fog
computing architectures. A multi-objective optimization strategy was developed to enhance system performance by
accommodating the properties of several factors, such as latency, energy consumption, and load balancing. A modeling
approach to task allocation was developed using meta-heuristic algorithms, such as Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), and Ant Colony Optimization (ACO), which were evaluated using successor datasets
called "Multi-Tier IoT Resource Allocation Dataset" at the platform, Kaggle.



According to the simulation results, the PSO approach gave the best results in all metrics as the method had the
best balanced solution based on latency and load balance, with an average combination of 5-7% improvement in
convergence time, and overall energy consumption dropped between 4-6 % from the others. The ACO model was
found to have consistent performance in relation to evenly distributing loads through complex topologies, while the
GA model had better diversity in maintaining solutions through local minima. Additionally, when doing complexity
analysis, it was established that in practice, the PSO algorithm is the most feasible to implement.

When evaluating such efficiency in a system, the PSO task allocation model increased resource utilization to .78,
resulted with a balance indicator, (1 - Gini) of .94, and increased the completion of deadlines to above 95 %. This
suggests that PSO is effective in creating a dynamic, self-adapting distribution, of resources in edge computing
environments. Consequently, based on the conducted analysis, the following scientific and practical conclusions were
drawn.

Multi-purpose metaheuristic approaches have a significant advantage over classical deterministic models in
complex networks, as they can adapt to dynamically changing resource conditions.

The PSO algorithm is recommended as the most effective method for ensuring an optimal balance between delay,
energy usage, and equilibrium in complex IoT/Fog environments.

When hybridized with PSO, GA and ACO algorithms can further increase the convergence speed and diversity of
solutions.

The proposed methodology has practical significance in designing real-time task allocation systems and can be
further enhanced in the future through integration with intelligent control systems based on Double Q-learning or
Multi-Agent Reinforcement Learning (MARL).

Overall, the research results provide an effective algorithmic foundation for optimized task distribution in IoT,
Edge, and Fog systems, and hold both scientific and practical value for the future development of self-managing
networks aided by artificial intelligence.
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