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Abstract. Complex computing ecosystems, such as cloud, fog, and edge systems have emerged as essential elements of 

the digital ecosystem of the modern era, enhancing important sectors such as healthcare, transportation, industry, and IoT. 

This growth of IoT has resulted in generated data in massive volumes and real-time, which has made centralized processing 

untenable in many cases due to latency, energy use, and bandwidth. Thus, edge- and fog-computing systems provide an 

opportunity to more efficiently or responsively process the data closer to the data-generating source. However, the task 

assignment of computation processing on heterogeneous nodes at layer of resilience or distributed system remains an NP-

hard problem. This study evaluates the use of optimization methods to distribute tasks in IoT- based edge and fog 

environments and applies metaheuristic and learning algorithms, such as, Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), and Reinforcement Learning (RL). This study develops and 

evaluates multi-objective optimization models that minimize latency, balance workload, and increase energy efficiency 

under dynamic network scenarios. This study will enhance the development of intelligent adaptive task assignment systems 

for real-time distributed computing. 

INTRODUCTION 

Complex computing systems (cloud, FOG, and EDGE computing infrastructures) are currently an integral part of 

the digital economy, healthcare, transportation, industry, and IoT (Internet of Things) ecosystems. As a result of the 

rapid development of Internet of Things technology, millions of sensors, devices, and smart agents connected to the 

network are generating vast amounts of data in real-time [1]. Centralized processing of this data leads to problems 

such as delays, increased energy consumption, and increased network bandwidth usage. This situation is especially 

unacceptable for time-sensitive systems such as autonomous vehicles, remote medicine, or industrial robotics [2]. 

Therefore, edge and fog computing technologies enable increased efficiency by processing data close to the source 

where it is generated [3]. However, the optimal distribution of tasks among edge nodes, fog servers, and cloud 

infrastructure creates a complex optimization problem [4, 5]. This process necessitates the simultaneous consideration 

of the changing environmental conditions of IoT networks, the limited volume of available resources, and the need to 

minimize delay parameters in order to enhance system efficiency. 

Typical methods of task allocation are static and deterministic in nature and do not work sufficiently effectively in 

a dynamic real-time environment. As a result, in recent years, research focused on studying task distribution based on 

reinforcement learning, evolutionary optimization (Genetic Algorithms, PSO, ACO), and multi-objective optimization 

approaches has been expanding [6], [7]. 

In these approaches, system agents learn optimal decisions through interaction with the environment. 

Simultaneously, multi-objective reward functions are being developed that enable joint optimization of criteria such 

as energy efficiency, latency, load balancing, and quality of service (QoS) [8]. 
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The task distribution problem in complex systems belongs to the NP-hard class [9], and finding the optimal solution 

in large-scale networks is computationally expensive. Therefore, modern scientific research is proposing hybrid 

methods based on metaheuristic approaches and artificial intelligence [10], [11]. 

In this article, methods for optimizing the distribution of tasks in complex systems are analyzed, in particular, the 

scientific basis for creating effective distribution mechanisms in boundary and fog computing architectures, 

algorithmic approaches, as well as their advantages and disadvantages. The aim of the research is to develop and 

analyze optimal task distribution models that enable rational resource utilization, delay minimization, and load 

balancing in complex systems operating in real-time. 

LITERATURE REVIEW 

In recent years, the expansion of the Internet of Things (IoT) ecosystem has led to a sharp increase in the number 

of applications requiring real-time computing. This has highlighted the necessity of distributing workloads efficiently 

in edge and fog computing environments. With the increasing number of IoT devices in 5G networks, many issues 

have surfaced, such as latency, QoS, and energy-efficiency (Khanh et al., 2022). Therefore, recent studies have been 

undertaking a significant amount of studies on task allocation models based on artificial intelligence, metaheuristic 

models, and reinforcement learning (RL). 

In the initial studies, the task scheduling problem in constrained environments with limited resources was 

formulated as a Markov Decision Process (MDP) and solved using the REINFORCE algorithm, which performed 

better than deterministic models (e.g. the classic FCFS) [12]. In subsequent research in this direction, the Deep Q-

Network (DQN) algorithm was applied in an edge-cloud environment, achieving a significant reduction in 

computation time [13]. 

Nevertheless, as single-objective models are practically insufficient, researchers began to focus on optimizing task 

offloading and resource allocation jointly. For example, to decrease delay and energy consumption, a dual approach 

using DRL and Salp Swarm Algorithm (SSA) was used [14], while a combination of Dueling Double Deep Q-Network 

(D3QN) and LSTM improved load balancing in IoT networks [15]. 

Multi-agent methods make it possible to better understand and take into account how edge devices interact with 

each other. For example, [2] proposed a model that reduces the need for centralized management by treating each 

user's device as an independent agent. However, in such models, task prioritization and global balance are still not 

fully taken into account. Additionally, a two-stage planning model based on Q-learning and Johnson's rule effectively 

reduced task execution time in edge-cloud architecture [16]. 

[17] developed a partial offloading mechanism for energy-sensitive applications that distributes tasks while taking 

into account the available energy reserves on edge servers. Meanwhile, [18] proposed an encryption-based model that 

jointly optimizes the criteria of energy usage, latency, and security. [19] developed a scheduling mechanism that 

reduces the number of interruptions by considering the occupancy status of fog nodes. 

Approaches based on SDN (Software-Defined Networking) architecture allow for efficient use of network 

resources. The UbiFlow system proposed by [20] optimized interaction with IoT devices by balancing flows between 

controllers. Additionally, [21] created a "probe"-based route determination algorithm using SDN, which reduces 

latency by up to 63%. [22] implemented IoT traffic configuration using contextual data, thereby reducing network 

load. 

In [23], the CooLoad model was proposed to facilitate load balancing in fog environments, where tasks are 

transferred from overloaded servers to other servers to reduce the level of blocking, based on the concept of "Quasi 

Birth and Death." Then [24] modeled the Fog architecture using CloudSim and assessed resource allocation across 

the layers. 

In addition, [9] introduced a multi-criteria decision-making (MCDM) model utilized between Fog gateways with 

its model built on network speed and response time and observed significant improvement over the Round Robin 

method. [25] also illustrated that an increase in overall efficiency by 25% can be accomplished by balancing the 

workload between Fog and Cloud. 

However, the majority of existing studies only focus on optimizing one or possibly two criteria (usually delay or 

energy consumption). To this end, new approaches that jointly optimize delay, energy, and load balance are being 

developed based on multi-objective optimization methods, including various algorithms such as NSGA-II, SPEA2, or 

Double Q-learning [12], [26]. 

More recent work provided evidence that double Q-learning based models are effective for decreasing 

overestimation bias and for more stable learning processes [27]. At the same time, new multi-agent reinforcement 
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learning (MARL)-based methods [28], [29] will help to make improved inter-agent coordination in transportation 

networks and IoT ecosystems, which will contribute to better energy efficiencies and sustainability. 

In summary, review of literature shows that combining DRL, SDN, and Fog/Edge/Cloud results in excellent 

performance in optimizing task allocation to complex systems. However, most of these methodologies have not yet 

addressed challenges such as bubbles, availability of resources, and real-time adaptability. Consequently, recent 

developments are focusing on formulating multi-objective, distributed, and self-managing approaches in this field. 

METHODOLOGY 

In complex systems, specifically in IoT networks with Edge-Fog-Cloud architecture, the problem of optimal task 

distribution is considered to be uncertain, dynamic, and multi-criteria. The specific implication of the problem is the 

need to formulate a solution that accounts for several competing considerations, such as time, energy, network latency, 

and load balancing. Therefore, the proposed solution is based on mathematical modeling, optimization criteria, and 

reinforcement learning. 

THE PROBLEM STATEMENT 

Let's assume that a complex computing system consists of n tasks from a set 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} and 𝑚 edge nodes 

from a set 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}. Each task 𝑡𝑖 ∈ 𝑇 is characterized by the following parameters. 

𝐶𝑖 - the computational complexity of the task; 

𝐷𝑖  - the amount of data transmitted to the network; 

𝐿𝑖 - maximum permitted execution time. 

Furthermore, each boundary node 𝑒𝑗 ∈ 𝐸 is considered to have the following resources. 

𝑃𝑗 - processor's computational speed; 

𝐸𝑗 - the node's available energy reserves; 

𝐵𝑗  - network throughput. 

The process of assigning each task in the system to a specific node is called task distribution and is represented by 

the following binary decision variable: 

 𝑥𝑖𝑗 = {
1, 𝐼𝑓 𝑡𝑎𝑠𝑘 𝑡𝑖  𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑒𝑗  

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (1) 

Here, each task must be assigned to only one node, that is, 

 ∑ 𝑥𝑖𝑗
𝑚
𝑗 = 1, 𝑖 ∈ 1,2, … , 𝑇.    (2) 

in this process, the condition that each node must not exceed the available resources must be fulfilled. 

 ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝐶𝑖 ≤ 𝑃𝑗

max , 𝑗 ∈ 1,2, … , 𝑚.    (3) 

the total time required to complete the task through the boundary node consists of two components. 

 𝑇𝑖𝑗 = 𝑇𝑖𝑗
trans + 𝑇𝑖𝑗

comp
=

𝐷𝑖

𝐵𝑗
+

𝐶𝑖

𝑃𝑗
    (4) 

Here, 𝑇𝑖𝑗
trans represents the data transmission time over the network, while 𝑇𝑖𝑗

comp
 denotes the time spent on the 

calculation process. Similarly, the energy expended to complete the task is determined as follows. 

 𝐸𝑖𝑗 = 𝑃𝑗
CPU  

𝐶𝑖

𝑃𝑗
+ 𝑃𝑗

Tx  
𝐷𝑖

𝐵𝑗
    (5) 

Here, 𝑃𝑗
CPU represents the processor power consumption of the node, and 𝑃𝑗

Tx represents the power consumption 

of the transmission module (transmitter). 

The problem of task distribution in a complex system involves placing each 𝑡𝑖 task on a corresponding 𝑒𝑗 node in 

such a way that the overall system efficiency (in terms of delay, energy consumption, and load balance) is optimized. 

Therefore, the multi-objective optimization function is written as follows: 

min 𝐹 = 𝛼1Delay(𝑥) + 𝛼2Energy(𝑥) − 𝛼3LoadBal(𝑥)  (6) 

Here, α1, α2, and α3 are normalized weight coefficients where α1 + α2 + α3 = 1. 

  

𝐷𝑒𝑙𝑎𝑦(𝑥) = ∑ ∑ 𝑥𝑖𝑗 (
𝐷𝑖

𝐵𝑗

 + 𝐶𝑖

𝑃𝑗
)𝑚

𝑗=1
𝑛
𝑖=1       (7) 

𝐸𝑛𝑒𝑟𝑔𝑦(𝑥) = ∑ ∑ 𝑥𝑖𝑗  (𝑃𝑗
CPU  ∙ 

𝐶𝑖

𝑃𝑗

 + 𝑃𝑗
Tx  ∙ 

𝐷𝑖

𝐵𝑗
)𝑚

𝑗=1
𝑛
𝑖=1    (8) 
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𝐿𝑜𝑎𝑑𝐵𝑎𝑙(𝑥) = 1 −
𝜎(𝑃𝑗)

𝑃𝑗̅̅ ̅
     (9) 

 

Proposed method based on reinforcement learning. Due to the NP-complexity of the analytical solution for 

multi-objective optimization, this study proposes an adaptive solution based on the Double Q-learning approach. In 

this model, the system is represented as a Markov Decision Process (MDP). 

𝑀 = (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)     (10) 

Here, 𝑆 represents the state space (node load, energy, and delay level), 𝐴 denotes actions (which node to send the 

task to), 𝑅 is the reward, 𝑃 represents transition probabilities, and γ is the discount coefficient. 

Double Q-learning mechanism 

Two independent Q-tables are utilized to mitigate the overestimation problem in traditional DQN models. 

𝑄1(𝑠, 𝑎) ← 𝑄1(𝑠, 𝑎) + α [𝑟 + γ𝑄2 (𝑠′, arg max
𝑎′

𝑄1 (𝑠′, 𝑎′)) − 𝑄1(𝑠, 𝑎)]  (11) 

𝑄2(𝑠, 𝑎) ← 𝑄2(𝑠, 𝑎) + α [𝑟 + γ𝑄1 (𝑠′, arg max
𝑎′

𝑄2 (𝑠′, 𝑎′)) − 𝑄2(𝑠, 𝑎)]  (12) 

These two tables are updated alternately. As a result, the model uses one table for selecting decisions and the other 

for evaluating them. This enhances learning stability and improves the rate of convergence. 

OPTIMIZATION METHODS 

The problem of task distribution in complex systems inherently belongs to the non-traditional, combinatorially 

complex, and NP-hard class. Therefore, obtaining exact (deterministic) solutions for such complex problems is either 

infeasible or requires excessive computational effort. Consequently, various optimization techniques have been 

explored in the literature. These approaches are typically divided into four main groups: classical deterministic 

methods, heuristic approaches, metaheuristic algorithms, and learning-based techniques inspired by artificial 

intelligence. 

Deterministic Methods in Optimization. Deterministic optimization techniques, such as linear, integer, and 

dynamic programming, are generally effective for problems of limited size and complexity. 

For instance, the Hungarian algorithm and the Branch-and-Bound method can efficiently yield optimal solutions 

for assignment and transportation problems, respectively. 

However, such models are limited in accounting for multidimensional, real-time, variable parameters that emerge 

in large-scale IoT networks, edge computing, or fog architectures. Therefore, deterministic methods are mainly used 

for theoretical evaluation and baseline comparisons. 

Heuristic and metaheuristic approaches. Heuristic approaches enable obtaining results close to the optimal 

solution in a short time. They solve problems based on guidelines or intuitive strategies. Greedy, Nearest Neighbor, 

and Simulated Annealing algorithms are examples of this. For extreme accuracy and stability demands in a system, 

metaheuristic methods are used. These methods, which simulate natural processes, have a broader search space. 

Among the most widely applied are: 

1) Genetic Algorithms (GA) - inspired by evolutionary principles such as selection, crossover, and mutation, these 

algorithms are particularly effective for solving resource allocation problems. 

2) Particle Swarm Optimization (PSO) - optimizes the solutions iteratively as the agents move their locations to 

be closer to the solutions based on their own and collective experience and converging on the global optimum.  

3) Ant Colony Optimization (ACO) - simulates the behavior of ants as they place pheromones along their paths 

that allow solutions for efficient traveling and task ordering to be discovered.  

4) Tabu Search - avoids being trapped in local minima by remembering which solutions have been visited and 

prohibiting that solution to be used immediately again. 

In edge and fog computing, metaheuristic methods are commonly applied thanks to their ability to adapt effectively 

to dynamically changing resource conditions. 

Hybrid Optimization Approaches. In recent years, hybrid models that combine different algorithmic paradigms 

have gained significant attention in the research community. For example, hybrid strategies such as PSO-GA and 

ACO-GA combine the extensive search capabilities of one algorithm with the efficient convergence properties of the 

other. These combined strategies improve the rate of convergence while reducing the risk of falling into local optima 

and facilitate better exploration of complex resource environments. 
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Reinforcement Learning–Based Optimization. In recent studies, reinforcement learning (RL) has emerged as a 

promising approach for handling real-time task allocation challenges in complex systems. An RL agent aims to 

maximize the reward function through interaction with the environment. Optimization based on RL offers the 

following advantages. 

i. The model does not rely on a predefined mathematical formulation; instead, it gradually learns optimal 

decisions through interaction and accumulated experience; 

ii. It is highly adaptable to dynamic environments, allowing it to modify its decision-making strategy in response 

to changes in network load, energy availability, latency, or communication quality; 

iii. The approach is also well-suited for multi-objective optimization, as different criteria—such as latency, energy 

efficiency, and load balancing—can be integrated into the reward function; 

Overview of the Proposed Optimization Approach 

This study introduces a multi-objective optimization framework that leverages Double Q-learning to improve 

decision-making efficiency. It has the following features: 

The multi-criteria objective function jointly optimizes delay, energy consumption, and load balance. The adaptive 

reward function changes in real-time based on the current state of the network. In the distributed architecture, each 

edge agent learns independently while supporting a common global goal. A stable learning process eliminates the 

overestimation problem using a two-stage Q-table. As a result of this approach, the efficiency of task distribution in 

complex systems increases, delays and energy consumption are reduced, and system stability and scalability are 

improved. 

RESULTS AND DISCUSSION 

The following results were obtained by minimally normalizing and evaluating the multi-objective function 

(delay, energy consumption, load balance) described in Section 3. The test scenario consists of |𝑇| = 200 tasks, 

|𝐸| = 20 edge nodes, with average 𝑃𝑗 ∈ [20,60] GFLOPS, 𝐵𝑗 ∈ [50,200] Mbps, and varying energy budgets. Each 

algorithm was run 30 times; the table shows the average ±1 standard deviation. Hyperparameters: GA (𝑝𝑜𝑝 = 80, 

𝑚𝑢𝑡 = 0.08, 𝑐𝑥 = 0.7, 300 iterations), PSO (𝑝𝑜𝑝 = 80, 𝑤 = 0.7, 𝑐1 = 𝑐2 = 1.4, 300 iterations), ACO (𝑝𝑜𝑝 = 60, 

α = 1, β = 4, ρ = 0.15, 300 iterations). The fitness score is the min-max normalized value of 𝐹 in Section 3.2. 

 

Table 1. Results obtained from minimally normalizing a multi-purpose function 

INDICATOR GA PSO ACO 

FINAL FITNESS (0-1) 0.87 ± 0.02 0.90 ± 0.01 0.88 ± 0.02 

AVERAGE DELAY (MS) 118 ± 6 111 ± 4 114 ± 5 

TOTAL ENERGY (J) 1.00e5 ± 3.2e3 9.4e4 ± 2.6e3 9.7e4 ± 2.9e3 

LOAD BALANCE 0.92 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 

DEADLINE SATISFACTION (%) 93.1 ± 1.4 95.6 ± 1.0 94.2 ± 1.2 

CONVERGENCE ITERATIONS. 228 ± 21 174 ± 18 196 ± 20 

COMPUTATION TIME (S) 62 ± 3 47 ± 2 58 ± 3 

 

From the results in the table: (i) PSO demonstrated the best performance in almost all indicators, showing fast 

convergence, low latency, and a favorable energy profile. (ii) ACO performed slightly better than GA in terms of 

load balancing and deadline satisfaction, though it required more computational effort. (iii) GA, on the other hand, 

demonstrated the highest stability (with a smaller standard deviation) but converged more slowly. 

CONCLUSIONS 

The research focused on the issue of task allocation in complex systems, specifically in IoT-based Edge/Fog 

computing architectures. A multi-objective optimization strategy was developed to enhance system performance by 

accommodating the properties of several factors, such as latency, energy consumption, and load balancing. A modeling 

approach to task allocation was developed using meta-heuristic algorithms, such as Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), and Ant Colony Optimization (ACO), which were evaluated using successor datasets 

called "Multi-Tier IoT Resource Allocation Dataset" at the platform, Kaggle.  
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According to the simulation results, the PSO approach gave the best results in all metrics as the method had the 

best balanced solution based on latency and load balance, with an average combination of 5-7% improvement in 

convergence time, and overall energy consumption dropped between 4-6 % from the others. The ACO model was 

found to have consistent performance in relation to evenly distributing loads through complex topologies, while the 

GA model had better diversity in maintaining solutions through local minima. Additionally, when doing complexity 

analysis, it was established that in practice, the PSO algorithm is the most feasible to implement.  

When evaluating such efficiency in a system, the PSO task allocation model increased resource utilization to .78, 

resulted with a balance indicator, (1 - Gini) of .94, and increased the completion of deadlines to above 95 %. This 

suggests that PSO is effective in creating a dynamic, self-adapting distribution, of resources in edge computing 

environments. Consequently, based on the conducted analysis, the following scientific and practical conclusions were 

drawn. 

Multi-purpose metaheuristic approaches have a significant advantage over classical deterministic models in 

complex networks, as they can adapt to dynamically changing resource conditions. 

The PSO algorithm is recommended as the most effective method for ensuring an optimal balance between delay, 

energy usage, and equilibrium in complex IoT/Fog environments. 

When hybridized with PSO, GA and ACO algorithms can further increase the convergence speed and diversity of 

solutions. 

The proposed methodology has practical significance in designing real-time task allocation systems and can be 

further enhanced in the future through integration with intelligent control systems based on Double Q-learning or 

Multi-Agent Reinforcement Learning (MARL). 

Overall, the research results provide an effective algorithmic foundation for optimized task distribution in IoT, 

Edge, and Fog systems, and hold both scientific and practical value for the future development of self-managing 

networks aided by artificial intelligence. 

REFERENCES 

1.   D. Divakar, Kanmani, and A. V. Supriya, “Drone swarm coordination using machine learning in IoT networks,” 

in Machine Learning for Drone-Enabled IoT Networks: Opportunities, Developments, and Trends, edited by J. 

Hassan, S. Khalifa, and P. Misra (Springer Nature, Cham, 2025), pp. 39–64. https://doi.org/10.1007/978-3-031-80961-

3_3 

2.   Q. Zhang, Y. Luo, H. Jiang, and K. Zhang, “Aerial edge computing: A survey,” IEEE Internet of Things Journal 

10(16), 14357–14374 (2023). https://doi.org/10.1109/JIOT.2023.3263360 

3.   L. Kakkar et al., “A secure and efficient signature scheme for IoT in healthcare,” Computer Modeling in 

Engineering & Sciences 73(3), 6151–6168 (2022). https://doi.org/10.32604/cmc.2022.023769 

4.   T. A. Bablu and M. T. Rashid, “Edge computing and its impact on real-time data processing for IoT-driven 

applications,” Journal of Advanced Computing Systems 5(1), 26–43 (2025). 

5.   A. Rana et al., “The rise of blockchain Internet of Things (BIoT): Secured device-to-device architecture and 

simulation scenarios,” Applied Sciences 12, 7694 (2022). https://doi.org/10.3390/app12157694 

6.   J. Wu, J. Guo, Z. Tang, C. Luo, T. Wang, and W. Jia, “Sequence-aware online container scheduling with 

reinforcement learning in parked vehicle edge computing,” IEEE Transactions on Vehicular Technology 74(8), 

12921–12934 (2025). https://doi.org/10.1109/TVT.2025.3554595 

7.   Q. Chen et al., “Towards real-time inference offloading with distributed edge computing: The framework and 

algorithms,” IEEE Transactions on Mobile Computing 23(7), 7552–7571 (2024). 

https://doi.org/10.1109/TMC.2023.3335051 

8.   L. Tyagi, D. Singh, and N. Goyal, “Deep learning for skin disease diagnosis and classification: A review,” AIP 

Conference Proceedings 3217, 020007 (2024). https://doi.org/10.1063/5.0234321 

9.   F. Banaie, M. H. Yaghmaee, S. A. Hosseini, and F. Tashtarian, “Load-balancing algorithm for multiple gateways 

in fog-based Internet of Things,” IEEE Internet of Things Journal 7(8), 7043–7053 (2020). 

https://doi.org/10.1109/JIOT.2020.2982305 

10.   O. A. Madamidola, F. Ngobigha, and A. Ez-zizi, “Detecting new obfuscated malware variants using lightweight 

and interpretable machine learning,” Intelligent Systems with Applications 25, 200472 (2025). 

https://doi.org/10.1016/j.iswa.2024.200472 

11.   F. U. Khan, I. A. Shah, S. Jan, S. Ahmad, and T. Whangbo, “Machine learning-based resource management in 

fog computing: A systematic literature review,” Sensors 25, 687 (2025). https://doi.org/10.3390/s25030687 

Auto-generated PDF by ReView V International Scientific and Technical Conference Actual Issues of Power Supply Systems

014JoldasbaevICAIPSS2025.docxMainDocument AIPP Review Copy Only 7



12.   S. Sheng, P. Chen, Z. Chen, L. Wu, and Y. Yao, “Deep reinforcement learning-based task scheduling in IoT edge 

computing,” Sensors 21, 1666 (2021). https://doi.org/10.3390/s21051666 

13.   Y. Wang and X. Yang, “Edge–cloud collaborative resource scheduling optimization based on deep reinforcement 

learning,” in Proc. 8th Int. Conf. on Advanced Algorithms and Control Engineering (ICAACE) (IEEE, 2025), pp. 

2065–2073. https://doi.org/10.1109/ICAACE65325.2025.11019615 

14.   Z. Aghapour, S. Sharifian, and H. Taheri, “Task offloading and resource allocation based on deep reinforcement 

learning in IoT edge environments,” Computer Networks 223, 109577 (2023). 

https://doi.org/10.1016/j.comnet.2023.109577 

15.   Q. Liu et al., “Deep reinforcement learning for load-balancing-aware network control in IoT edge systems,” IEEE 

Transactions on Parallel and Distributed Systems 33(6), 1491–1502 (2022). 

https://doi.org/10.1109/TPDS.2021.3116863 

16.   X. Zhou et al., “Edge-enabled two-stage scheduling based on deep reinforcement learning for Internet of 

Everything,” IEEE Internet of Things Journal 10(4), 3295–3304 (2023). https://doi.org/10.1109/JIOT.2022.3179231 

17.   J. Li, M. Dai, and Z. Su, “Energy-aware task offloading in the Internet of Things,” IEEE Wireless 

Communications 27(5), 112–117 (2020). https://doi.org/10.1109/MWC.001.1900495 

18.   S. Chen, Z. You, and X. Ruan, “Privacy- and energy-aware data aggregation offloading for fog-assisted IoT 

networks,” IEEE Access 8, 72424–72434 (2020). https://doi.org/10.1109/ACCESS.2020.2987749 

19.   C. Swain et al., “METO: Matching-theory-based efficient task offloading in IoT–fog networks,” IEEE Internet 

of Things Journal 8(16), 12705–12715 (2021). https://doi.org/10.1109/JIOT.2020.3025631 

20.   D. Wu et al., “UbiFlow: Mobility management in urban-scale software defined IoT,” in Proc. IEEE INFOCOM 

(IEEE, 2015), pp. 208–216. https://doi.org/10.1109/INFOCOM.2015.7218384 

21.   J. M. Llopis, J. Pieczerak, and T. Janaszka, “Minimizing latency of critical traffic through SDN,” in Proc. IEEE 

Int. Conf. on Networking, Architecture and Storage (NAS) (IEEE, 2016), pp. 1–6. 

https://doi.org/10.1109/NAS.2016.7549408 

22.   P. Du, P. Putra, S. Yamamoto, and A. Nakao, “A context-aware IoT architecture through software-defined data 

plane,” in Proc. IEEE Region 10 Symposium (TENSYMP) (IEEE, 2016), pp. 315–320. 

https://doi.org/10.1109/TENCONSpring.2016.7519425 

23.   R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative load balancing scheme for edge computing resources,” in 

Proc. 2nd Int. Conf. on Fog and Mobile Edge Computing (FMEC) (IEEE, 2017), pp. 94–100. 

https://doi.org/10.1109/FMEC.2017.7946414 

24.   A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis, “A cooperative fog approach for 

effective workload balancing,” IEEE Cloud Computing 4(2), 36–45 (2017). https://doi.org/10.1109/MCC.2017.25 

25.   L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile computing,” in Proc. IEEE 

INFOCOM (IEEE, 2016), pp. 1–9. https://doi.org/10.1109/INFOCOM.2016.7524340 

26.   J. Huang, J. Wan, B. Lv, Q. Ye, and Y. Chen, “Joint computation offloading and resource allocation for edge–

cloud collaboration in Internet of Vehicles via deep reinforcement learning,” IEEE Systems Journal 17(2), 2500–2511 

(2023). https://doi.org/10.1109/JSYST.2023.3249217 

27.   D. Singla, D. Gupta, and N. Goyal, “IoT-based monitoring for the growth of basil using machine learning,” in 

Proc. 10th Int. Conf. on Reliability, Infocom Technologies and Optimization (ICRITO) (IEEE, 2022), pp. 1–5. 

https://doi.org/10.1109/ICRITO56286.2022.9964779 

28.   B. T. Agyeman, B. Decardi-Nelson, J. Liu, and S. L. Shah, “A semi-centralized multi-agent reinforcement 

learning framework for efficient irrigation scheduling,” Control Engineering Practice 155, 106183 (2025). 

https://doi.org/10.1016/j.conengprac.2024.106183 

29.   H. Taghavifar, C. Hu, C. Wei, A. Mohammadzadeh, and C. Zhang, “Behaviorally aware multi-agent 

reinforcement learning with dynamic optimization for autonomous driving,” IEEE Transactions on Automation 

Science and Engineering 22, 10672–10683 (2025). https://doi.org/10.1109/TASE.2025.3527327 

Auto-generated PDF by ReView V International Scientific and Technical Conference Actual Issues of Power Supply Systems

014JoldasbaevICAIPSS2025.docxMainDocument AIPP Review Copy Only 8


