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Abstract. This article analyzes the cross-compensation substitution scheme of reactive power compensation and the 

construction of a vector diagram. The main purpose of transverse compensation is to improve the power factor. In such 

compensation, power losses and voltage reductions have been analyzed for their pre-compensation and postcompensation 

States by placing capacitors in electrical grids. In addition the vector diagram of the transverse capacitance compensation 

chain and the vector diagram on the voltages at the beginning and end of the transverse compensatory network have been 

studied. In this case, the question of determining the C capacitance and reactive power Qkb required to increase the power 

coefficient from cosφ1 to cosφ2 by exceeding the natural value of the consumer's power coefficient from the vector 

diagram to transverse compensation has been seen. 

INTRODUCTION 

In general reactive power compensation is the achievement of increasing the power coefficient. One of the 

important types of compensation is transverse compensation. In the compensating process, the greatest reduction in 

power losses in electrical networks is achieved by deploying capacitors. This makes it possible to increase the 

voltage level that is transmitted along with the placement of capacitors. This process will largely depend on the 

position where the capacitors are located. 

It is known that under the influence of transverse compensation, in addition to the current load of the existing 

elements in the power supply system, it leads to a decrease in the voltage in the network and the appearance of a 

voltage ratio at the beginning and end of the power grid [1-2, 21-24, 37-39]. 

If there is a need for transverse capacitance compensation, this is done using capacitor devices installed in certain 

areas of the power supply system. To this end, it is necessary to consider alternating current electrical circuits to 

which electricity consumers and parallel capacitor batteries are connected to calculate and analyze cross-

compensation as a reactive power source [3-6, 25-27, 35-36]. 

LITERATURE SURVEY 

In cross-compensation analysis, a circuit is obtained in which the electricity consumer and capacitor batteries are 

connected in parallel. The network currents in Node a of the usbu Circuit Switching Scheme are found based on the 

equation in which Kirchhoff's first law is constructed (Fig.1) [7-8, 28-31]. According to him IL tok is defined as 

follows: 

İL=İd+ İKB                                                                            (1) 

mailto:Nimatov@mail.ru


where İL, İd,  İKB-are the vector values of the currents in the network, charge and capacitor batteries, respectively. 

 
FIGURE 1. Transverse capacitance compensation replacement scheme 

 

In accordance with Kirchhoff's first law (1), the construction of the flow and Vector diagram of the current 

vectors is shown in Fig.2. 

 
FIGURE 2. Vector diagram of cross-capacitive compensation in a circuit 

 

Transverse compensation, as a vector diagram for a network consisting of a load at the end of the network to 

which the Xkb capacitor battery is connected. Although this does not take into account the active resistance of the 

capacitor battery. Since the capacitor battery is connected in parallel with the consumer, the consumer's load current 

to the φ
1
-angle φ

2
- - angle decreases from the I1 value to the I2 value. In this, the amount of current in the network 

decreases, i.e. ∆I=I1 -I2. In the power supply system, the current is reduced by the same amount in electrical 

consumers as the existing generators and capacitor generate Q
KB

 reactive power from where the batteries are 

installed. The active and reactive organizers of reactive power waste ∆Pq    and   ∆Q
q
are reduced due to reduced 

load on the network and generators. As a result, the total reactive power capacitor battery is reduced to Q
KB

 power 

[7-8, 32-34]. 
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here R and X -are the active and reactive resistance of energy system consumers. 

The cross-sectional surface of the conductor being selected for the projected network is found as follows. 

∆F=
∆I

je
                       (3) 

where  ∆I- is the decrease in network Current;   Je- is the economic density of network Current. 

Accordingly, a voltage drop occurs on the network in accordance with the nominal power reduction of the 

transformer. As a result, the capacitor connected to the network reduces the voltage drop at the expense of the Q
KB

 

of power in the battery and is found as follows [15-18, 40-43]: 

ΔU=
P⋅R+(Q-Q

KB
)⋅XU

 U
.                                                                          (4) 

However, when the installed capacity of the capacitor banks significantly exceeds the required level, the reactive 

current may become larger than the consumer’s inductive current. In such a case, the inequality IBK>IdI holds, 

leading to overcompensation and a shift of the power factor into the capacitive region. Then the angle φ
2
 is less than 

zero and the power factor passes through cosφ=1 and the power is in the quadrant of the capacitance. The result is 

excessive compensation. Capacitance Current flows from the consumer to the source, and the network Current 

increases with an increase in I
C
 capacitance current. In this case, the increase in the capacity of C and the 



dependence on the I
L
 network Current corresponds to the angle φ

2
 in a certain range, that is, it is recommended to 

have a limit φ
2
≥0  and cosφ≤+1. The vector diagram is shown in Fig.2 [18-21, 44-48]. 

To increase the natural power factor before applying cross-compensation, it will be necessary to increase the 

cosφ
1
 power factor at the start of the network to a higher value of the cosφ

2
 power factor at the end of the network. 

In this, the vector allows you to determine the reactive power of the С capacitance and capacitor battery, which 

will be necessary using the diagram, and the Iс current is found as follows: 

IC=IdL1- IdL1=Iatgφ
1
-Iatgφ

2
=Ia(tgφ

1
-tgφ

2
)                                            (5) 

Thus, it follows that Ic=
U

xKB
=UωC and ˕Ia=

P

U
 taking into account that UωC=

P

U
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)  thus, we obtain.  

Accordingly, the capacitor is the sig and reactive power of the battery, 
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For the purpose of bringing the power factor closer together, the load is used to compensate for the capacitive 

organizers of the IKB current in inductance connected parallel to the load when it is in a capacitive character [49-51]. 

This can happen in special cases, when enterprises have long-term high-voltage cable lines in the period when 

the network load is low, and the entire capacity of capacitors only works during the nominal load hours of 

enterprises. The voltages at the end of the network can be expressed in two ways on a vector diagram (Fig.3) [52]. 

 
FIGURE 3. Vector diagram on voltage values at the beginning and end of a transverse compensable electrical network 

 

The first is when there is no transverse compensation system across the entire network; the second is when there 

is a possible compensation that increases the power factor to cosφ
2
=1. Vector diagrams of the voltage U 2 at the end 

of the power line and the constant voltage values of the active power in the consumer are shown in Figure 3. 

According to the diagram, the absolute values of the U1 voltage at the beginning of the transmission network and the 

U 2 voltage at the end of the transmission network, as well as transverse compensation, cause the angle to change 

from one φ value to 0 values, so it is observed that the voltage from the U1 voltage to the U 2 voltage is small [53. 

The scheme for connecting to the loading chain of the capacitor device for the transverse compensation process 

is shown in Fig. 4. 

 

 
FIGURE 4. Scheme of connecting capacitance to a transverse compensation loading chain 

 

When a sinusoidal voltage is given to the clamps of the circuit shown in the figure, the power of a single-phase 

capacitor is determined by the following expression: 

Q= U2ωC .                                                                                     (7) 



where U- is the grid voltage; C- is the capacitance of the three - phase capacitor.  

In general, the capacity of three-phase capacitor batteries to which the Triangle is connected is also determined 

as above. In this case, the power of a three-phase capacitor in a star circuit, to which it is connected to a network 

voltage, is determined by the following ratio: 

Q= 
1

3
U2ωC .                                                                                  (8) 

where C- is the sum of the capacities of all phases of a three-phase network. 

Given the above designations, the power factor up to compensation is expressed in terms of tgφ
1
=

Q

P
 and the 

power factor after compensation in terms of tgφ
2
=

(Q-QKB)

P
. Accordingly, it follows that cosφ

2
>cosφ

1
 since tgφ

2
<tgφ

1
. 

Active power waste in the pre-compensation network 

∆P1=3I 2R=
S 2
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Active power waste in the post-compensation network 
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kb
)

2
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Reduction of active power waste after compensation in the network 
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RESEARCH RESULTS 

The apparent power prior to compensation can be expressed as 

S1=
P

cos⁡φ
1

 

whereas after compensation it is determined by 

S2=
P

cos⁡φ
2

, 

Accordingly, the ratio of these quantities is obtained as 
S1

S2
=

cos φ1

cos φ2

.                        (12) 

From this relationship, it is evident that when cos⁡φ
2
> cos φ

1
, the condition S2<S1 holds. This implies that the 

apparent power requirement decreases with the improvement of the power factor after compensation. Hence, the 

apparent power before compensation is inversely related to the improved power factor [7-8, 54-59]. 

Voltage drops in the system, both before and after compensation, can be represented in the following form: 

∆U
1
=√3 ∙I (R cosφ+ X sin φ) 

or post-substitution are expressed as: 

∆U1 =
P∙R+Q∙X

U
                                                                                 (13) 

while the voltage waste after compensation is 

∆U2 =
P∙R+(Q-Q

kb
)∙X

U
                                                                          (14) 

The decrease in the voltage waste per minute, as well as the decrease in voltage at the end of consumers (13) and 

(14), taking into account the expressions, will be as follows: 

∆U1-∆U2=
P∙R+Q∙X

U
-

P∙R+(Q-Q
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Q
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U
                                                   (15) 

A change in the consumer load leads to a change in voltage in the network. Considering the determination of 

voltage waste at full load before compensation according to the above expression (13), while at full load the voltage 

waste is calculated as follows: 

∆U’1 =
k∙(P∙R+Q∙X)

U
                                                                             (16) 

where k- is the coefficient proportional to the decrease in load.  



Reducing the voltage waste in a state where the network is not at full load is expressed as: 

∆U1-∆U’
1=
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U
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At full load, the post-compensation voltage waste, (14) formula is expressed as: 

∆U2 =
P∙R+(Q-Q

kb
)∙X

U
                                                                    (18) 

When not at full load, the 

∆U’2 =
k∙P∙R+(kQ-Q
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)∙X

U
                                                              (19) 

Reducing the voltage waste of the network during post-compensation and incomplete loading is equivalent to: 

∆U2-∆U’
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U
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kb
)∙X

U
 = 
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=
PR+QX-k(PR+QX)

U
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U
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It follows from the expression (20) induced above that the oscillation of post-compensation voltages when load 

decreases in the network is like the oscillation of pre-compensation voltages (17) expression. But the voltage level 

will be greater. In this case, the decrease in voltage waste (15) is determined according to the expression, since the 

decrease in voltage waste is due to the change in the constant value Q
kb

s and Xs for electrical devices [7-8, 60-65]. 

CONCLUSIONS 

Analysis shows that the voltage level in the network during the transverse compensation process can increase to 

a constant value, depending on the capacity of the installed capacitor bank, the installation location, and the 

reactance of the connected elements. Transverse compensation is recognized as an effective approach for 

minimizing active power losses while preserving the magnitude of transmitted power. Alternatively, it facilitates an 

increase in the transmission capacity of the electrical network without a proportional rise in power dissipation. 

Moreover, according to established principles of power system analysis, in addition to the processes of reactive 

power generation and absorption, capacitive and inductive elements of electrical networks inherently exhibit 

compensatory interactions. This phenomenon is extensively employed in modern power supply systems to achieve 

reactive power compensation, which not only enhances the stability of voltage profiles but also contributes to a 

significant reduction in both voltage drops and total power losses. 
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