

V International Scientific and Technical Conference Actual Issues of Power Supply Systems

Educational Content Methods Software and Tools for Developing Professional Competence of Future Engineers Based on Virtual Educational Technologies

AIPCP25-CF-ICAIPSS2025-00041 | Article

PDF auto-generated using **ReView**

Educational Content, Methods, Software and Tools for Developing Professional Competence of Future Engineers Based on Virtual Educational Technologies

Aziza Murodova ^{a)}, Gayrat Shertaylaqov, Bakhtiyor Muhammadiyev, Nomoz Badalov

Jizzakh polytechnic institute, Jizzakh, Uzbekistan

^{a)} Corresponding author: azizamurodova664@gmail.com

Abstract. This article provides a theoretical analysis of the current state of the problem of preparing engineers for professional activities in Uzbekistan. The features of the training of engineering personnel for professional activities using information technologies and the development of information and professional competencies in the context of digital education are presented. The results of creating a model for the formation of information and professional competencies by means of virtual laboratory complexes and electronic educational technologies are presented. In fact, when it comes to construction, new technology should take its place. It should also be said that even technologies that build buildings without human intervention are being put into practice. In addition, even after the completion of the lesson processes, there will be an opportunity to see the education through online lessons or get acquainted with future lessons.

INTRODUCTION

The emergence of new forms, technologies and resources, of course, has an impact on the learning process in universities. Already today there are a large number of practices confirming the use of Internet resources in the educational process, but their massuse is associated with a number of difficulties.

An analysis of the results of the research shows that in the modern labor market there is a demanded social order for specialists with the knowledge and skills to work with spatial data and large amounts of information in the information and analytical supply of management [1]. The fulfillment of this order, first of all, will require the setting of a number of pedagogical tasks within the framework of the advanced formation and development of professional competence in a situation of social diffusion of the latest information technologies [2].

Our pedagogical research shows that the current practice of training future engineers at the university of Uzbekistan demonstrates insufficient attention to a practice-oriented approach and a tendency towards the universalization of information professional competence. Nevertheless, modern students show the abilities formed by the external information environment and the school to form and develop information professional competence in the direction of teaching in-depth informatization of specific types of professional activities [3]. In connection with the foregoing, we put forward an assumption about the need to develop associative thinking among future engineers and the advisability of using virtual learning systems to solve this educational problem.

New requirements in modern conditions are imposed on engineering education on the basis of a competency-based approach, which presupposes the focus of the educational process on mastering general cultural, professional, general professional competencies laid down in state educational standards that ensure the successful implementation of the professional activities of an engineer in a broad social, cultural, and economic context [4]. The work of a modern engineer is complex and multifaceted.

One of the main goals of higher engineering education today is to prepare a competent engineer. The quality of education of specialists and the level of their professional competence have acquired particular relevance in modern

conditions [5]. "The competence of specialists is understood not only as their professional qualification characteristics – knowledge, skills and abilities, but also their professional and personal characteristics – human behavioral reactions in various work situations". From the perspective of acmeology, the following general and mandatory "characteristics of professional competence" are identified for all specialists: gnostic (cognitive) – reflects the presence of the necessary professional knowledge (their volume and level are the main characteristics of competence); regulatory – allows you to use existing professional knowledge to solve professional problems; reflexive-status - gives the right to act in a certain way due to the recognition of authority [6]; normative – reflects the terms of reference, the scope of professional competence; communicative determines the possibility of establishing

contacts of various types for the implementation of practical activities" [7]. When studying at a technical university, a student develops different competencies at different stages of educational activity. For example, in the first semesters, students study general scientific disciplines such as physics, chemistry, philosophy, history, foreign language. While studying these disciplines they are forming learning and independent work skills [8]. Students learn to work in a team, tolerant of general social and national differences between people. Study use the basics of acquired knowledge in various fields of activity [9]. Students develop the ability for self-organization and self-education, the ability to correctly express their own thoughts in oral and written speech when communicating with people and for solving assigned tasks and goals.

MATERIALS AND METHODS

Our study allowed us to confirm the heuristic and expediency of the competence-based approach that we have identified as a theoretical and methodological basis in the formation and development of the information professional competence of future engineers [10]. Diagnostics of information professional competence of students, analysis of modern principles of informatization show the possibilities of influence of the future engineer on the effectiveness of the innovative way of development of the industry in the context of general informatization. In addition, this social target orientation requires the integration of professionally oriented competencies related to the skills and abilities of using virtual learning systems in management, a set of professional and general cultural competencies related to the tasks of promoting virtual learning systems as innovations.

Today, the task is to develop and form the skills and knowledge of the assimilation of information professional innovations, to effectively demonstrate its importance and value for solving specific professional problems. Therefore, the information professional competence of future engineers includes the ability to convince and need to use new information tools, to form information, economic, emotional, managerial, technological conditions for the introduction of virtual learning systems and other innovations [11].

Analysis of the requirements for future professional activity is the basis for modeling the structure of education. Revealing the structure and essence of the term «information professional competence» helped us to create a model of its formation among future engineers by means of virtual learning systems.

Under the formation and development of professional information professional competence of future engineers, we understand the controlled, purposeful promotion of future specialists in the study of theoretical concepts and methods of functioning of the relevant technologies and processes.

Psychological and pedagogical support for the development of this competence includes a set of appropriate means, forms, content, methods, organizational and pedagogical conditions that contribute to the formation and development of information professional competence of future engineers.

An analysis of the psychological and pedagogical problems of development and the social demand for the information professional competence of specialists has demonstrated the shortcomings of the models used today in the practice of professionally oriented training in the universities of Uzbekistan [12]. The model developed by us for the formation of information professional competence of students consists in coordinating all components of the pedagogical process for the implementation of didactic synthesis and interdisciplinary connections between the disciplines of professional and information training, as a condition for the development and formation of information professional competence of future engineers.

The creation of a model for the development and formation of information professional competence was implemented according to the following logic: identifying the purpose of designing the model, its connection with the tasks and purpose of the activity under study, substantiating the modules of the model (meaningful, motivational, technological), determining the principles and approaches on the basis of which this model works (experimental testing of the model, determination of the main result).

The proposed model for the formation of information professional competencies by means of virtual laboratory complexes and electronic educational technologies belongs to the category of «concept». The concept of «concept» implies a certain relationship between its components and the pedagogical system. The concept of «concept» includes the main modules of the model: motivational, content, technological and control [13].

As a result of the study of the methodological and theoretical foundations for the formation of information and communication competencies of students in virtual learning systems, a model was built and described, consisting of modules: meaningful, technological, motivational and control.

The content module helps to provide future engineers with the opportunity to master skills and knowledge while solving educational problems [14].

The technological module consists of teaching aids used in the virtual laboratory complex.

The motivational module has an impact on the formation and development of information professional competencies in achieving tasks and goals in the motivational sphere, which positively affects the educational process.

The control module helps to determine the effectiveness of the process of formation and development of information and communication competencies of future engineers in the course of using virtual laboratory complexes [15]. The control module contains a credit-module system that has segments of control and evaluation at various stages of learning.

The purpose of the content block is the formation and development of information professional competencies of future engineers: motivational, cognitive, activity, communication components, which determine the student's readiness to acquire knowledge in special disciplines, the ability to independently find, process, analyze and transform, transmit and store information through communication and information technologies, the desire for creative self-realization and self-education in the educational process [16].

RESULTS AND DISCUSSIONS

Analyzing in detail the model for the formation and development of information professional competencies, the future engineer is offered both traditional and modern approaches and forms to learning in virtual laboratory complexes, which are an innovation in the pedagogical technology of the educational process [17]. The virtual space where information professional competencies can be formed consists of the following components: cognitive, motivational, communication and activity areas.

Structural components of the development and formation of competencies in the field of engineering technologies have been designed:

The cognitive component consists of the value of information and knowledge of the essence of modern society, the latest technologies and their principles, analysis, information processing and working with a computer, knowledge of basic software, computer technology, software products, knowledge of information protection methods, the distinctive features of the information society.

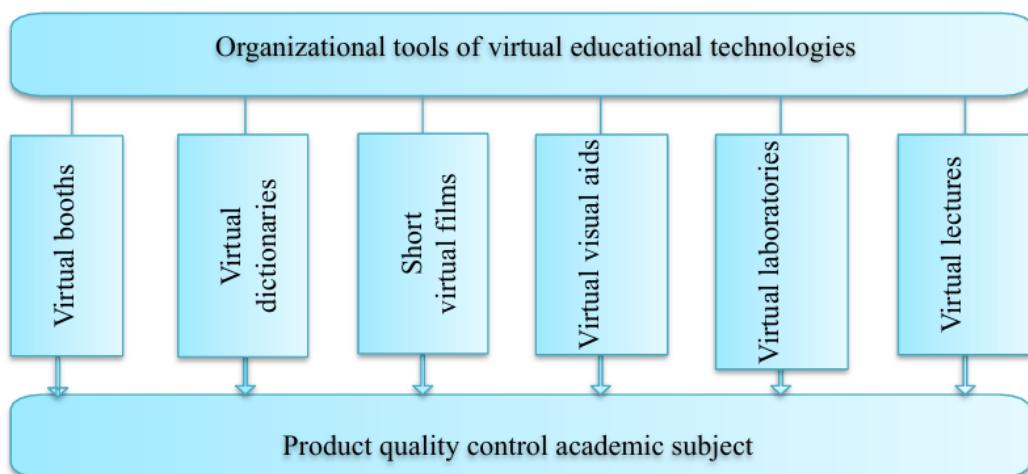
The motivational component involves identifying the motives of future engineers to enhance learning activities in a virtual laboratory complex and e-learning, includes the aspect of the formation and development of competencies, the need for self-development, self-realization and self-improvement in the educational process.

The communication component contains the aspect of the formation and development of competencies in the training of future engineers, involves the use of communication tools in electronic systems, Internet resources for feedback in the educational process [18].

The activity component consists in the ability to apply information professional competence in future professional activities; development of skills in working with software and tools for professional and general purposes, to comply with information security requirements, the ability to work with information and data in global computernetworks.

The motivational module of the model considers tasks, goals, methods and forms, organizational methods for the formation and development of information professional competencies by means of virtual laboratory complexes.

In the process of formation and development of information professional competencies of future engineers, the following tasks are solved by means of virtual laboratory complexes and educational technologies:


- 1) mastery of skills;
- 2) formation of competencies;
- 3) development of creative abilities.

Accordingly, for the implementation of these tasks, the use of virtual laboratory complexes, methodological

support for electronic training programs will be effective: information and reference materials, methods and forms of organizing the educational process: survey, observation, questioning and self-diagnosis.

The purpose of the motivational module of the model is to highlight the initial foundations, determine the direction for the effectiveness of the process of forming information professional competencies [19]. In addition, it includes goals that are determined by the social order of the modern information society, the requirements of state international and educational standards, the curriculum of the specialty, the pedagogical process of the university, and the program of a specific educational process.

The social order of modern society implies the achievement by future engineers of a certain level of information professional competencies, which makes it possible to use informatization tools to solve professional problems. Education and training of such a specialist takes place through the development of the requirements of the state educational standard for vocational education of universities and requirements for the level and minimum content of graduate training.

Figure 1. Organizational tools of virtual educational technologies in the subject of product quality control

The task of the university, in turn, is to organize an effective pedagogical process in accordance with the standard.

The content of educational activities is determined by curricula, curricula in subjects that determine the direction of preparing students for a specific competence. The technological module is a backbone element in the presented model.

The module contains a methodological framework with personality-oriented and competence-oriented approaches.

The methodological basis is as follows:

- 1) application and development of methods, content and forms;
- 2) competence-oriented approach;
- 3) application of virtual laboratory complexes;
- 4) independent work;
- 5) control of the quality of training.

The technological module of the model for the formation of information professional competencies presents the following elements of virtual laboratory complexes:

- software interface for laboratory work;
- applet manager;
- Web server;
- database management system;
- an application (Java) that controls the laboratory installation;
- servlet (Java) that generates WWW-pages;

- applications (Java), fixing the results of the user's work with the system.

It should be noted that the components of virtual laboratory complexes consist of both various traditional educational tools (intelligent lectures, maps, seminars) and innovative ones (electronic learning systems, participation in various electronic platforms, the use of electronic testing, etc.).

In the control module, we single out the levels of competence formation: advanced, intermediate and intial levels.

The control module also includes a credit-module system consisting of control points at various stages of education.

To identify the level of formation of information professional competencies of a future engineer of a particular component, we have defined the following criteria: competence-based, personal-semantic, structural-logical.

The process of each module consists of the following parts:

- 1) creation of virtual electronic cards;
- 2) independent work (solving tasks for performing laboratory work);
- 3) conducting training sessions (practical work at a computer);
- 4) control of the formation and development of information professionalcompetencies (testing).

The result shows the formation of information professional competencies of future engineers, which is determined by three levels (advanced, intermediate, intial) [20].

The model proposed by us provides for the fulfillment of the following organizational and pedagogical conditions:

- 1) integration of elements of e-learning systems and technologies and traditional teaching methods;
- 2) creation of a virtual learning environment, taking into account the competence-based approach in education;
- 3) increasing the motivation of intellectual and cognitive activity of students, taking into account the creation of an information and technological environment.

In connection with the foregoing, by developing the skills of information professional competencies, the future engineer acquires competencies that correspond to his professional activities. A set of standard competencies: general cultural competencies, key competencies, information professional competencies, professional competencies.

Thus, the developed model makes it possible to identify the content of competence, form competencies, show the logic of the formation of information professional competencies, using the means of a virtual training system in organizational and pedagogical conditions.

The main goal of creating and implementing the developed model is the formation of professional information professional competence of future engineers.

At the next stage, the study of general professional disciplines begins, in particular, materials science, engineering graphics, metrology, and the fundamentals of design and construction. Students acquire the ability to apply fundamental laws in the disciplines of natural sciences in their professional activities, the ability to use methods of mathematical analysis and modeling, theoretical and experimental research. Students begin to master the basic methods and means of receiving, content and processing information. They have the ability to solve simple problems in the professional field of their activity on the basis of information and bibliographic culture using information and communication technologies and taking into account the basic requirements of information security. They begin to understand the basic property and purpose of information in the development processes of the modern world.

At the last stage of study at the university, special disciplines are taught. After studying them, students can take part in activities to compile scientific reports on the work done and in the introduction of the research results obtained to the desired professional field. They may also be able to participate in working on innovative projects using basic methods research practice. Students acquire the ability to perform initial economic and technical justification of design solutions, ability to perform patent research to ensure patent purity new design solutions, the ability to apply methods for quality control of objects and products in the field of professional activity, analyze possible causes of violations of technological processes and prepare measures to prevent them.

CONCLUSIONS

Basic information professional competence - the readiness and ability of a future engineer to perform simple

professional tasks using the skills of an advanced user (search for training materials, the ability to work with virtual training systems, create multimedia elements). Possession of basic information professional competence allows you to form key information professional competence, in other words, the ability of a specialist to perform standard professional tasks using modern information technologies. The ability of a future engineer to perform non-standard and complex professional tasks based on information professional determines special information professional competence. Any level differs in the depth and specificity of mastering one or another computer tool, in addition, it is impossible to possess special competencies without basic knowledge of the use of information professional in professional activities.

The predictable result is the mastery of the relevant theoretical concepts, increasing the information professional competence of future engineers, which is the basis of the control block of our model. It defines the features of the process of formation and development of information professional competence, the methods, forms and means of training used, and contains indicators, criteria and levels of formation of information professional competence.

The use of the methodology for the formation and development of information professional competence is related to the development and use of a virtual laboratory complex of a virtual training system.

It should be noted that the methodology for the formation and development of information professional competence is based on establishing links between the components of the content of disciplines of subject and information training, the implementation of which is carried out at the level of didactic synthesis and interdisciplinary connections.

Thus, on the basis of the above proposals for the organization of the virtual educational system of the university, it is possible to determine the basic principles of its construction:

- 1) the continuity and complexity of teaching specific professionally-oriented disciplines within and with the help of subjects of the information cycle;
- 2) problem-modular approach to solving professional problems;
- 3) an individually-oriented approach to the choice of a subject area, which is implemented with the help of calculation and graphic tasks;
- 4) independence not only in the formation of a practical goal, but also in the choice of ways to achieve the goal;
- 5) active study of professionally oriented components in the course of introductory, industrial and practical training.

The following characteristics of the "formation process" can be distinguished: readiness for engineering activities: orientation of content and forms educational process of the university to prepare an engineer capable of going beyond limits of regulatory activity and carry out innovative processes; active focus on the process of developing professional readiness engineer to advanced domestic and foreign experience; humanistic focus of engineer training; bringing the engineer training process to technological level.

REFERENCES

1. Obeid & Demirkan, 2023 S.Obeid, H.Demirkan, The influence of virtual reality on design process creativity in basic design studios, *Interactive Learning Environments*, 31 (4) (2023), pp. 1841-1859, 10.1080/10494820.2020.1858116 <https://doi.org/10.1080/10494820.2020.1858116>
2. Huang et al., 2021 H.Huang, C.Lin, D.Cai, Enhancing the learning effect of virtual reality 3D modeling: A new model of learner's design collaboration and a comparison of its field system usability, *Universal Access in the Information Society*, 20(3)(2021), pp. 429-440, 10.1007/s10209-020-00750-7. <https://doi.org/10.1007/s10209-020-00750-7>
3. Yousef, 2021 A.M.F. Yousef, Augmented reality assisted learning achievement, motivation, and creativity for children of low-grade in primary school, *Journal of Computer Assisted Learning*, 37(4). (2021), pp. 966-977, 10.1111/jcal.12536. <https://doi.org/10.1111/jcal.12536>
4. Makransky et al., 2020 G.Makransky, G.B.Petersen, S.Klingenberg, Can an immersive virtual reality simulation increase students' interest and career aspirations in science? *British Journal of Educational Technology*, 51(6)(2020), pp. 2079-2097, 10.1111/bjet.12954. <https://doi.org/10.1016/j.compedu.2021.104429>
5. Wang et al., 2021 Z.Wang, Y.Guo, Y.Wang, Y.F.Tu, C.Liu, Technological solutions for sustainable development: Effects of a visual prompt scsffolding-based virtual reality approach on EFL learners' reading comprehension, learning attitude, motivation, and anxiety, *Sustainability*, 13(24)(2021), Article 13977, 10.3390/su132413977. <http://dx.doi.org/10.11591/edulearn.v16i4.20648>

6. Adhanom, I. B., MacNeilage, P., & Folmer, E. (2023). Eye tracking in virtual reality: A broad review of applications and challenges. *Virtual Reality*, 1–24. <https://doi.org/10.1007/s10055-022-00738-z>

7. Rappa et al, 2022. N.A. Rappa, S. Ledger, T. Teo, K.Wai Wong, B. Power, B. Hilliard, The use of eye tracking technology to explore learning and performance within virtual reality and mixed reality settings: A scoping review, *Interactive Learning Environments*, 30 (7) (2022), pp. 1338-1350. <http://dx.doi.org/10.1080/10494820.2019.1702560>

8. Goldberg et al., 2021. P. Goldberg, Ö. Sümer, K. Stürmer, W. Wagner, R. Göllner, P. Gerjets, ..., U. Trautwein, Attentive or not? Toward a machine learning approach to assessing students' visible engagement in classroom instruction, *Educational Psychology Review*, 33 (2021), pp. 27-49. <https://link.springer.com/article/10.1007/s10648-019-09514-z>

9. Sharma et al., 2020. K. Sharma, M. Giannakos, P. Dillenbourg. Eye-tracking and artificial intelligence to enhance motivation and learning Smart Learning Environments, 7 (13) (2020), pp. 1-19. <https://slejournal.springeropen.com/articles/10.1186/s40561-020-00122-x>

10. Castner et al., 2020. N. Castner, T. Appel, T. Eder, J. Richter, K. Scheiter, C. Keutel, E. Kasneci Pupil diameter differentiates expertise in dental radiography visual search *PLoS One*, 15 (5) (2020), Article e0223941. <http://dx.doi.org/10.1371/journal.pone.0240139>

11. A.D. Souchet, S. Philippe, D. Lourdeaux, L. Leroy Measuring visual fatigue and cognitive load via eye tracking while learning with virtual reality head-mounted displays: A review *International Journal of Human- Computer Interaction*, 38 (9) (2022), pp. 801-824. <http://dx.doi.org/10.1080/10447318.2021.1976509>

12. D. Belonovskaya, E.M. Yezerskaya, Formation of the future engineer's readiness to manage production and technological risks, *Bulletin of the Samara State Technical University, Series: Psychological and Pedagogical Sciences*, Vol.1 (25), pp. 32-41 (2015). <https://www.researchgate.net/publication/371701635>

13. N. Cavus, Distance learning and learning management systems, *Procedia-Social and Behavioral Sciences*, Vol. 191, pp. 872-877 (2015). <https://doi.org/10.1016/j.sbspro.2015.04.611>

14. E.N. Zaborova, I.G. Glazkova and T.L. Markova, Distance learning: Students' perspective, *Sociological Studies*, Vol. 2(2), pp.131-139 (2017). <http://dx.doi.org/10.18502/kss.v5i2.8353>

15. T. Markova, I. Glazkova and E. Zaborova, Quality issues of online distance learning, *Procedia-Social and Behavioral Sciences*, Vol. 237, pp. 685. <https://doi.org/10.1016/j.sbspro.2017.02.043>

16. How Can Virtual Reality Be Used to Improve Education?" Future of Ed Tech Insiders, 2021.05.30, <https://blog.fetc.org/how-can-virtual-reality-be-used-to-improve-education/>

17. Rafael Villena-Taranilla, et al., "Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis," *ScienceDirect*, 2022.01.17, <https://www.sciencedirect.com/science/article/pii/S1747938X22000033>.

18. Onquice Y. A .. Xysolidepance M. 3. AxMeao T. E. kyu capadminner sioatiompish modern information technology rilan oylali / / Academic research in educational sciences.-2021.-T. 2.-N. 3.-C. 1262-1268. <https://doi.org/10.5281/zenodo.7643786>

19. Muradova A. Technology of Development of Professional and Technical Component of Future Engineers By Means of Virtual Education Technology //Science and innovation. - 2023. - T. 2. - no. B2. - S. 306-311 . <https://doi.org/10.1111/jcal.12536>

20. Abdurasulovich H.J, M.A.Y. Theoretical Basis of Professional Competence Development of Future Engineers on the Base Of Virtual Educational Technologies //Science and innovation. - 2023. - T. 2. - no. Special Issue 10. - S. 182 -189. <https://doi.org/10.5281/zenodo.7643786>