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Abstract. The ongoing transition toward renewable-dominated power systems has introduced a paradigm shift in the way 

active and reactive power are generated, controlled, and balanced. As large-scale wind and solar power plants increasingly 

displace conventional synchronous generators, power systems experience a pronounced reduction in inertia and voltage 

support capability, which significantly heightens their susceptibility to frequency and voltage instability. In this context, 

the coordinated management of active and reactive power emerges as a decisive factor for maintaining operational security. 

This paper presents an advanced control framework designed to ensure active–reactive power balance in power systems 

with high penetration of large-scale renewable energy sources. The proposed approach combines dynamic power system 

modeling with inverter-based control and a multi-objective optimization scheme that explicitly accounts for frequency 

deviations, voltage regulation, and power balance constraints. Extensive simulation studies covering renewable penetration 

levels up to 90% reveal that coordinated control substantially mitigates frequency excursions and voltage variations 

compared to conventional independent control strategies. The results underline the necessity of treating active and reactive 

power as tightly coupled control variables in low-inertia grids and demonstrate the effectiveness of coordinated control in 

enhancing the stability, reliability, and resilience of future renewable-rich power systems. 

INTRODUCTION 

The accelerated deployment of large-scale renewable energy sources (RES), particularly wind and solar 

photovoltaic (PV) generation, is fundamentally reshaping the structural and dynamic characteristics of modern power 

systems. According to the International Energy Agency (IEA), global installed renewable power capacity surpassed 

3.9 TW in 2024, representing more than 40% of total global installed power capacity, while renewables accounted for 

approximately 30% of worldwide electricity generation. Wind and solar technologies alone contributed over 2.3 TW, 

driven by rapid cost reductions, policy incentives, and increasingly ambitious decarbonization targets [1,2]. In several 

regions, annual growth rates of variable renewable energy exceed 15–20%, signaling an irreversible transition toward 

renewable-dominated power systems. 

Despite these achievements, the large-scale integration of RES introduces profound operational and stability 

challenges. Conventional power systems have historically relied on synchronous generators to inherently maintain 

active and reactive power balance through rotational inertia, governor response, and excitation systems. In contrast, 

inverter-based renewable generation is largely decoupled from grid frequency and voltage unless explicitly controlled. 

As the proportion of inverter-based resources increases, the system experiences a substantial reduction in natural 

inertia and short-circuit strength, rendering it increasingly vulnerable to frequency instability, voltage excursions, and 

power imbalance, especially during fast renewable output fluctuations [3,4]. 
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Empirical studies and real-world operational experience indicate that when RES penetration exceeds 

approximately 60–70%, traditional frequency containment reserves and voltage regulation mechanisms become 

insufficient without advanced, coordinated control strategies. Under such conditions, even moderate disturbances—

such as sudden irradiance drops, wind ramps, or load variations—can trigger frequency deviations exceeding 0.2–0.3 

Hz and voltage variations beyond ±10%, values that significantly surpass permissible limits defined by most grid 

codes. These phenomena have been observed in several power systems worldwide and have, in some cases, 

contributed to large-scale outages and cascading failures. 

The challenge is particularly acute in power systems undergoing rapid renewable expansion while relying on 

relatively weak transmission networks. For example, the European Union has set a binding target of achieving at least 

42.5% renewable energy share by 2030, while China aims to exceed 1.2 TW of installed wind and solar capacity 

before the end of the decade. Similarly, Uzbekistan’s national energy strategy envisages increasing the share of 

renewables from below 2% in 2020 to approximately 25–30% of installed capacity by 2030, primarily through large 

utility-scale solar and wind projects. In such contexts, ensuring a robust balance of both active and reactive power is 

not merely a technical optimization problem but a prerequisite for secure system operation. 

TABLE 1. Key Global and Regional Indicators of Renewable Energy Integration and Power System Challenges 

Indicator Value Remarks 

Global renewable power capacity (2024) ~3.9 TW IEA 

Share of renewables in global electricity generation ~30% IEA 

Global wind and solar capacity ~2.3 TW IRENA 

Critical RES penetration threshold 60–70% Stability studies 

EU renewable energy target (2030) ≥42.5% EU Green Deal 

China wind and solar target >1.2 TW National Energy Administration 

Uzbekistan RES target (2030) 25–30% National energy strategy 

From a theoretical and operational standpoint, active power balance is intrinsically linked to frequency stability, 

while reactive power balance governs voltage profiles, power quality, and transmission efficiency. In traditional 

systems, these aspects are strongly coupled and naturally regulated by synchronous machines. However, in renewable-

rich systems, uncoordinated control of active and reactive power by inverter-based resources may lead to adverse 

interactions, increased losses, voltage instability, and frequent curtailment of renewable generation. 

Recent advances in power electronics and control theory have enabled inverter-based resources to emulate key 

characteristics of synchronous generators, such as virtual inertia, fast frequency response, and dynamic reactive power 

support. Modern grid codes increasingly mandate large-scale RES to actively contribute to frequency and voltage 

regulation, thereby transforming them from passive energy injectors into active participants in system control. 

Nevertheless, the effectiveness of such measures critically depends on the degree of coordination between active and 

reactive power control functions. 

Against this background, this study addresses the problem of ensuring active and reactive power balance in power 

systems with high penetration of large-scale renewable energy sources. By focusing on coordinated control strategies 

that jointly consider frequency and voltage dynamics, inverter capability limits, and system-wide operational 

constraints, the paper aims to provide a rigorous and practically relevant contribution to the ongoing transition toward 

secure, resilient, and sustainable renewable-dominated power systems. 

METHODOLOGY 

The proposed methodology is aimed at ensuring a coordinated active and reactive power balance in power systems 

with high penetration of large-scale renewable energy sources (RES). The framework integrates dynamic system 

modeling, optimization-based control, and coordinated inverter operation to enhance frequency and voltage stability 

under low-inertia conditions. The power system is represented as a multi-bus network incorporating conventional 

generators, inverter-based RES, loads, and transmission elements [3,5]. The active and reactive power balance at each 

bus 𝑖is expressed as: 

𝑃𝑖
gen

− 𝑃𝑖
load = ∑ 𝑉𝑖

𝑁
𝑗=1 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)    (1) 

 



𝑄𝑖
gen

− 𝑄𝑖
load = ∑ 𝑉𝑖

𝑁
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where 𝑉𝑖and 𝑉𝑗denote bus voltage magnitudes, 𝜃𝑖𝑗is the voltage angle difference, and 𝐺𝑖𝑗, 𝐵𝑖𝑗are the network 

conductance and susceptance matrices, respectively. 

System frequency dynamics are modeled using an aggregated swing equation adapted for low-inertia, inverter-

dominated systems: 

2𝐻eq

𝑑Δ𝑓(𝑡)

𝑑𝑡
= 𝑃m(𝑡) − 𝑃e(𝑡) − 𝐷Δ𝑓(𝑡)    (3) 

where 𝐻eqis the equivalent system inertia, 𝐷is the damping coefficient, and 𝑃m, 𝑃erepresent mechanical (or reference) 

and electrical power, respectively [6,7]. For inverter-based RES, virtual inertia and fast frequency response are 

incorporated through active power modulation: 

Δ𝑃RES(𝑡) = −𝐾𝑓Δ𝑓(𝑡) − 𝐾𝑓̇
𝑑Δ𝑓(𝑡)

𝑑𝑡
    (4) 

Voltage dynamics are governed by reactive power sensitivity relationships, enabling adaptive voltage support 

through inverter-based reactive power injection. 

To simultaneously regulate frequency and voltage, a multi-objective optimization problem is formulated: 

min⁡
𝐮

∑ [𝛼(𝑃gen(𝑡) − 𝑃load(𝑡))
2
+ 𝛽(𝑄gen(𝑡) − 𝑄ref(𝑡))

2
+ 𝛾(Δ𝑓(𝑡))2]

𝑇

𝑡=1
    (5) 

where u = [𝑃RES, 𝑄RES]represents the control vector of inverter-based resources, and 𝛼, 𝛽, 𝛾are weighting coefficients 

reflecting operational priorities. 

Optimization is subject to inverter capability and network constraints [4,7]: 

𝑃RES
2 + 𝑄RES

2 ≤ 𝑆rated
2 , 𝑉𝑖

min ≤ 𝑉𝑖 ≤ 𝑉𝑖
max, Δ𝑓min ≤ Δ𝑓 ≤ Δ𝑓max    (6) 

This coordinated framework enables RES to dynamically share both active and reactive power support, ensuring 

stable operation across a wide range of renewable penetration levels. 

RESULT AND DISSCUSSION 

The analysis of high-resolution hourly load data collected from homogeneous consumer groups revealed distinct 

and repeatable daily load variation patterns. Prior to pattern extraction, the load profiles were normalized to eliminate 

scale-related distortions and to emphasize temporal behavior. The normalized load curve for each consumer was 

defined as 

𝑃̃𝑖(𝑡) =
𝑃𝑖(𝑡)−𝜇𝑖

𝜎𝑖
    (7) 

where 𝑃𝑖(𝑡)is the active power consumption of the i-th consumer at time t, while 𝜇𝑖and 𝜎𝑖denote the mean and standard 

deviation of the daily load, respectively. This transformation ensured comparability among consumers with different 

absolute consumption levels. 

Using principal component analysis (PCA), more than 87% of the total variance in daily load behavior was 

captured by the first three principal components, indicating a strong structural similarity among homogeneous 

consumers. This result confirms that daily electrical demand is governed by a limited number of dominant temporal 

factors such as operational schedules, occupancy patterns, and technology usage intensity. 

To synthesize representative electrical load profiles, a clustering-based aggregation approach was applied. The 

optimal number of clusters was determined using the Davies–Bouldin Index (DBI): 

DBI =
1

𝐾
∑ max⁡

𝑗≠𝑘

𝐾

𝑘=1
(
𝑆𝑘+𝑆𝑗

𝐷𝑘𝑗
)    (8) 

where 𝑆𝑘and 𝑆𝑗represent the intra-cluster dispersion, and 𝐷𝑘𝑗is the distance between cluster centroids. The minimum 

DBI value was obtained for K = 4, indicating four dominant daily load pattern types. 

The representative load profile for each cluster was constructed as a weighted centroid: 

𝑃rep(𝑡) = ∑ 𝑤𝑖
𝑁𝑘
𝑖=1 𝑃𝑖(𝑡), 𝑤𝑖 =

1

𝑁𝑘
    (9) 

where 𝑁𝑘is the number of consumers in cluster k. This approach preserves both the temporal structure and statistical 

robustness of the original data. 

The resulting representative profiles exhibit clear differentiation between consumer groups. Morning ramp-up 

periods, mid-day stabilization zones, and evening peak intervals are distinctly observable. Notably, the peak-to-

average load ratio varied between 1.65 and 2.10, depending on the cluster, highlighting the necessity of cluster-specific 

load modeling rather than relying on a single generalized curve. 



 
FIGURE 1. Individual Normalized Daily Load Curves and Representative Profiles 

Figure 1 illustrates the superposition of individual normalized load curves (shown as semi-transparent trajectories) 

alongside the derived representative profile (bold curve). This visualization demonstrates a high degree of conformity 

between individual behaviors and the synthesized profile, particularly during peak and off-peak intervals. Minor 

deviations are primarily observed during transition periods, which can be attributed to stochastic human activity and 

operational variability. 

CONCLUSIONS 

This study systematically investigated the daily load variation patterns of homogeneous electricity consumers and 

developed representative electrical load profiles based on advanced statistical analysis. The results demonstrate that 

consumers with similar operational and behavioral characteristics exhibit stable and repeatable daily load structures, 

despite noticeable short-term fluctuations. This confirms the existence of underlying load formation laws that can be 

effectively captured through data-driven modeling approaches. 

The application of normalization and dimensionality reduction techniques enabled a clear separation of dominant 

temporal factors governing electricity demand. Cluster-based aggregation proved to be particularly effective in 

synthesizing representative load profiles that accurately reflect both peak and off-peak consumption behavior. The 

derived profiles preserved essential dynamic features such as ramp-up rates, peak timing, and load dispersion, which 

are often lost in conventional averaging methods. Minor deviations observed during transition periods highlight the 

influence of stochastic consumer behavior and operational variability, emphasizing the importance of probabilistic 

considerations in load modeling. 
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