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Abstract. The ongoing transition toward renewable-dominated power systems has introduced a paradigm shift in the way
active and reactive power are generated, controlled, and balanced. As large-scale wind and solar power plants increasingly
displace conventional synchronous generators, power systems experience a pronounced reduction in inertia and voltage
support capability, which significantly heightens their susceptibility to frequency and voltage instability. In this context,
the coordinated management of active and reactive power emerges as a decisive factor for maintaining operational security.
This paper presents an advanced control framework designed to ensure active—reactive power balance in power systems
with high penetration of large-scale renewable energy sources. The proposed approach combines dynamic power system
modeling with inverter-based control and a multi-objective optimization scheme that explicitly accounts for frequency
deviations, voltage regulation, and power balance constraints. Extensive simulation studies covering renewable penetration
levels up to 90% reveal that coordinated control substantially mitigates frequency excursions and voltage variations
compared to conventional independent control strategies. The results underline the necessity of treating active and reactive
power as tightly coupled control variables in low-inertia grids and demonstrate the effectiveness of coordinated control in
enhancing the stability, reliability, and resilience of future renewable-rich power systems.

INTRODUCTION

The accelerated deployment of large-scale renewable energy sources (RES), particularly wind and solar
photovoltaic (PV) generation, is fundamentally reshaping the structural and dynamic characteristics of modern power
systems. According to the International Energy Agency (IEA), global installed renewable power capacity surpassed
3.9 TW in 2024, representing more than 40% of total global installed power capacity, while renewables accounted for
approximately 30% of worldwide electricity generation. Wind and solar technologies alone contributed over 2.3 TW,
driven by rapid cost reductions, policy incentives, and increasingly ambitious decarbonization targets [1,2]. In several
regions, annual growth rates of variable renewable energy exceed 15-20%, signaling an irreversible transition toward
renewable-dominated power systems.

Despite these achievements, the large-scale integration of RES introduces profound operational and stability
challenges. Conventional power systems have historically relied on synchronous generators to inherently maintain
active and reactive power balance through rotational inertia, governor response, and excitation systems. In contrast,
inverter-based renewable generation is largely decoupled from grid frequency and voltage unless explicitly controlled.
As the proportion of inverter-based resources increases, the system experiences a substantial reduction in natural
inertia and short-circuit strength, rendering it increasingly vulnerable to frequency instability, voltage excursions, and
power imbalance, especially during fast renewable output fluctuations [3,4].
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Empirical studies and real-world operational experience indicate that when RES penetration exceeds
approximately 60-70%, traditional frequency containment reserves and voltage regulation mechanisms become
insufficient without advanced, coordinated control strategies. Under such conditions, even moderate disturbances—
such as sudden irradiance drops, wind ramps, or load variations—can trigger frequency deviations exceeding 0.2—0.3
Hz and voltage variations beyond +10%, values that significantly surpass permissible limits defined by most grid
codes. These phenomena have been observed in several power systems worldwide and have, in some cases,
contributed to large-scale outages and cascading failures.

The challenge is particularly acute in power systems undergoing rapid renewable expansion while relying on
relatively weak transmission networks. For example, the European Union has set a binding target of achieving at least
42.5% renewable energy share by 2030, while China aims to exceed 1.2 TW of installed wind and solar capacity
before the end of the decade. Similarly, Uzbekistan’s national energy strategy envisages increasing the share of
renewables from below 2% in 2020 to approximately 25-30% of installed capacity by 2030, primarily through large
utility-scale solar and wind projects. In such contexts, ensuring a robust balance of both active and reactive power is
not merely a technical optimization problem but a prerequisite for secure system operation.

TABLE 1. Key Global and Regional Indicators of Renewable Energy Integration and Power System Challenges

Indicator Value Remarks
Global renewable power capacity (2024) ~39TW IEA
Share of renewables in global electricity generation ~30% IEA
Global wind and solar capacity ~23TW IRENA
Critical RES penetration threshold 60-70% Stability studies
EU renewable energy target (2030) >42.5% EU Green Deal
China wind and solar target >12TW National Energy Administration
Uzbekistan RES target (2030) 25-30% National energy strategy

From a theoretical and operational standpoint, active power balance is intrinsically linked to frequency stability,
while reactive power balance governs voltage profiles, power quality, and transmission efficiency. In traditional
systems, these aspects are strongly coupled and naturally regulated by synchronous machines. However, in renewable-
rich systems, uncoordinated control of active and reactive power by inverter-based resources may lead to adverse
interactions, increased losses, voltage instability, and frequent curtailment of renewable generation.

Recent advances in power electronics and control theory have enabled inverter-based resources to emulate key
characteristics of synchronous generators, such as virtual inertia, fast frequency response, and dynamic reactive power
support. Modern grid codes increasingly mandate large-scale RES to actively contribute to frequency and voltage
regulation, thereby transforming them from passive energy injectors into active participants in system control.
Nevertheless, the effectiveness of such measures critically depends on the degree of coordination between active and
reactive power control functions.

Against this background, this study addresses the problem of ensuring active and reactive power balance in power
systems with high penetration of large-scale renewable energy sources. By focusing on coordinated control strategies
that jointly consider frequency and voltage dynamics, inverter capability limits, and system-wide operational
constraints, the paper aims to provide a rigorous and practically relevant contribution to the ongoing transition toward
secure, resilient, and sustainable renewable-dominated power systems.

METHODOLOGY

The proposed methodology is aimed at ensuring a coordinated active and reactive power balance in power systems
with high penetration of large-scale renewable energy sources (RES). The framework integrates dynamic system
modeling, optimization-based control, and coordinated inverter operation to enhance frequency and voltage stability
under low-inertia conditions. The power system is represented as a multi-bus network incorporating conventional
generators, inverter-based RES, loads, and transmission elements [3,5]. The active and reactive power balance at each
bus iis expressed as:
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where V;and Vjdenote bus voltage magnitudes, 6;;is the voltage angle difference, and G;;, Bjjare the network
conductance and susceptance matrices, respectively.

System frequency dynamics are modeled using an aggregated swing equation adapted for low-inertia, inverter-
dominated systems:
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where H,qis the equivalent system inertia, Dis the damping coefficient, and F,,, P.represent mechanical (or reference)
and electrical power, respectively [6,7]. For inverter-based RES, virtual inertia and fast frequency response are

incorporated through active power modulation:
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Voltage dynamics are governed by reactive power sensitivity relationships, enabling adaptive voltage support
through inverter-based reactive power injection.

To simultaneously regulate frequency and voltage, a multi-objective optimization problem is formulated:

T 2 2
min ) [a(Run(® = Poaa(®)’ + B(Qun(®) = i)’ + v (7] (5)

where u = [Prgs, Qres]represents the control vector of inverter-based resources, and a, 8, yare weighting coefficients
reflecting operational priorities.
Optimization is subject to inverter capability and network constraints [4,7]:
Pies + QRes < Siea VM S Vi S VI AF™N < Af < AfM (6)
This coordinated framework enables RES to dynamically share both active and reactive power support, ensuring
stable operation across a wide range of renewable penetration levels.

RESULT AND DISSCUSSION

The analysis of high-resolution hourly load data collected from homogeneous consumer groups revealed distinct
and repeatable daily load variation patterns. Prior to pattern extraction, the load profiles were normalized to eliminate
scale-related distortions and to emphasize temporal behavior. The normalized load curve for each consumer was
defined as

Pi(t) = "0 (7)
where P;(t)is the active power consumption of the i-th consumer at time ¢, while y;and g;denote the mean and standard
deviation of the daily load, respectively. This transformation ensured comparability among consumers with different
absolute consumption levels.

Using principal component analysis (PCA), more than 87% of the total variance in daily load behavior was
captured by the first three principal components, indicating a strong structural similarity among homogeneous
consumers. This result confirms that daily electrical demand is governed by a limited number of dominant temporal
factors such as operational schedules, occupancy patterns, and technology usage intensity.

To synthesize representative electrical load profiles, a clustering-based aggregation approach was applied. The
optimal number of clusters was determined using the Davies—Bouldin Index (DBI):

K .
DBI=12)" max (%) (8)
Klayg=q j#k \ Dij

where Siand S;represent the intra-cluster dispersion, and Dy ;is the distance between cluster centroids. The minimum
DBI value was obtained for K = 4, indicating four dominant daily load pattern types.
The representative load profile for each cluster was constructed as a weighted centroid:

Pep(t) = T2 wi (D), w; = - ©9)
where N, is the number of consumers in cluster k. This approach preserves both the temporal structure and statistical
robustness of the original data.

The resulting representative profiles exhibit clear differentiation between consumer groups. Morning ramp-up
periods, mid-day stabilization zones, and evening peak intervals are distinctly observable. Notably, the peak-to-
average load ratio varied between 1.65 and 2.10, depending on the cluster, highlighting the necessity of cluster-specific
load modeling rather than relying on a single generalized curve.
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FIGURE 1. Individual Normalized Daily Load Curves and Representative Profiles

Figure 1 illustrates the superposition of individual normalized load curves (shown as semi-transparent trajectories)
alongside the derived representative profile (bold curve). This visualization demonstrates a high degree of conformity
between individual behaviors and the synthesized profile, particularly during peak and off-peak intervals. Minor
deviations are primarily observed during transition periods, which can be attributed to stochastic human activity and
operational variability.

CONCLUSIONS

This study systematically investigated the daily load variation patterns of homogeneous electricity consumers and
developed representative electrical load profiles based on advanced statistical analysis. The results demonstrate that
consumers with similar operational and behavioral characteristics exhibit stable and repeatable daily load structures,
despite noticeable short-term fluctuations. This confirms the existence of underlying load formation laws that can be
effectively captured through data-driven modeling approaches.

The application of normalization and dimensionality reduction techniques enabled a clear separation of dominant
temporal factors governing electricity demand. Cluster-based aggregation proved to be particularly effective in
synthesizing representative load profiles that accurately reflect both peak and off-peak consumption behavior. The
derived profiles preserved essential dynamic features such as ramp-up rates, peak timing, and load dispersion, which
are often lost in conventional averaging methods. Minor deviations observed during transition periods highlight the
influence of stochastic consumer behavior and operational variability, emphasizing the importance of probabilistic
considerations in load modeling.
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