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Abstract. This study focuses on the simulation of heat and mass transfer processes in the circuit elements of a sodium-
cooled fast reactor, specifically testing the LOGOS software package on a benchmark problem involving thermal mixing
in a T-junction from the Phenix reactor. The work includes a review of computational fluid dynamics (CFD) methods
such as Reynolds-Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and Direct Numerical Simulation
(DNS). Numerical modeling in LOGOS was performed using three grid resolutions, with results compared to
experimental data. Key findings indicate good agreement between simulated and experimental temperature profiles, with
relative deviations not exceeding -0.3% 2% on the finest grid. The study highlights the suitability of LOGOS for
modeling thermal-hydraulic processes in liquid-metal-cooled reactors, emphasizing safety implications related to thermal
fatigue.

INTRODUCTION

Sodium exhibits favorable properties for nuclear power reactors, including high heat transfer capacity and a wide
temperature range between its melting point (371 K) and boiling point (1155 K) at atmospheric pressure. However,
sodium is highly flammable, igniting upon contact with air oxygen at operational temperatures, producing dense
white smoke composed of sodium oxides (Na;O and Na,O) that react with humidity to form caustic sodium
hydroxide (NaOH) and subsequently carbonate (Na,COj3) [1]. Sodium fires from leaks can cause significant
structural damage, as observed in the 1986 Almeria solar power plant incident [1]. Historical sodium leaks in
reactors range from grams to about 2 tons [2], often due to flow-induced vibrations (e.g., Monju reactor in
December 1995 [3,4]) or thermal fatigue (e.g., Superphenix in April 1990).

Thermal fatigue arises from mixing flows at different temperatures, leading to fluctuating temperature fields in
the fluid, which transfer to adjacent structures with minimal attenuation due to sodium's high heat transfer
coefficient [10,11]. In liquid-metal fast reactors (LMFRs), potential thermal striping occurs in the upper plenum
from mixing jets of fuel, breeder, and control assemblies, as well as in T-junctions in primary (loop-type reactors),
secondary, and auxiliary circuits [10,11]. To mitigate sodium leak risks from thermal fatigue or vibrations, detailed
thermal-hydraulic analyses for steady and transient states are essential [12,13]. CFD codes are employed for such
calculations, with flows in T-junctions simulated using RANS [14,15], LES [16,19], and DNS [20,21].

This paper examines RANS and LES approaches for sodium flow in the Phenix reactor's T-junction
configuration, where an upstream elbow induces skewed velocity distribution, flow separation, and secondary flows
[22,24]. Results from RANS simulations are presented, focusing on coarse and fine grids with wall refinement. LES
results emphasize wall temperature fluctuations and thermal fatigue zones. Additionally, the LOGOS software is
tested for modeling these processes, comparing simulations to experimental data.

Historical and Operational Context of the Phenix Reactor. The Phenix prototype sodium-cooled fast breeder
reactor, located in Marcoule, France, began construction in November 1968, achieved first divergence in August
1973, and grid connection in December 1973, reaching 580 MWth (260 MWe) in March 1974 [2]. It operated with a
closed fuel cycle from 1979, achieving a breeding ratio of 1.16. Over 30 years, it provided operational experience
for fast neutron reactors and supported R&D for Generation IV systems. Phenix featured a tank-type design with
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core, three primary pumps, six intermediate heat exchangers, and one rotating plug . The vessel held 800 tons of
sodium under 40 mbar argon cover gas. Sodium entered at 380°C and exited at 530°C. The 1.5 m diameter, 0.85 m
high core used (U-Pu)O, fuel with 23-28% plutonium in hexagonal stainless steel-clad assemblies.

Phenix demonstrated self-stabilizing thermal feedbacks, low spatial effects, and high thermal inertia for safety
margins. No high pressure or phase changes in the primary circuit; no boron for reactivity compensation, avoiding
xenon poisoning. Four automatic scrams in the 1990s due to negative reactivity transients were hypothesized as

sodium bubble explosions [2].
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FIGURE 1. Rea;:tor section

Phenix demonstrated self-stabilizing thermal feedbacks, low spatial effects, and high thermal inertia for safety
margins. No high pressure or phase changes in the primary circuit; no boron for reactivity compensation, avoiding
xenon poisoning. Four automatic scrams in the 1990s due to negative reactivity transients were hypothesized as
sodium bubble explosions [2].

TABLE 1. Assignment of the phases in the slots

Problem Area / Component Contribution to Downtime
Intermediate Heat Exchangers 2691 %
Scheduled Maintenance 14.72 %
Steam Generators 13.46 %
Fuel Reloading 11.99 %
Negative Reactivity Insertions 7.92 %
Turbogenerator and its Systems 7.02 %
Fuel Assemblies 2.93 %
Secondary Circuit 2.54 %
Control Systems 2.34%
Sodium Leaks 2.54 %
Personnel Errors 0.29 %
Other 7.34 %

Construction used a continuous metal lining for the underground reactor compartment, with 10 mm thick
horizontal and 5 mm vertical sheets. Lifetime electricity production: 24,440.402 GWh, with availability factors of
45.81% (energy), 39.91% (load), 41% (capacity). Downtime causes listed in Table 1, including heat exchanger leaks
and four A.U.R.N. incidents in 1989-1990 from reactivity spikes, possibly due to assembly expansion
[2].Predecessor: Rapsodie (40 MWth, 1967-1983). Successor: Superphenix (3000 MWth, 1985-1998, closed
politically). Future: ASTRID in 2020s.
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EXPERIMENTAL RESEARCH

Approaches to Thermal-Hydraulic Modeling in Reactors.

CFD is a modern tool for verifying engineering designs by computing flow characteristics using physico-
mathematical methods. It enables assessment of system performance and external influences before detailed design,
testing hypotheses and concepts. Experiments and CFD simulations bridge knowledge gaps, with CFD increasingly
relied upon due to the high cost and difficulty of experiments, especially for local effects not captured by system
codes. In LMFRs, wire wraps as spacers for fuel rods require detailed local flow knowledge [5,6].

Coolant flow exiting the core comprises outlets from various fuel assemblies heated to different temperatures,
causing temperature fluctuations that may lead to thermal fatigue in structures [7]. Accurate characterization of
liquid metal flow structure above the core is crucial. This section reviews modeling methods for heat and mass
transfer in fuel assemblies and plenum hydraulics in LMFRs, emphasizing CFD developments, particularly by the
Nuclear Research and Consultancy Group (NRG) in the Netherlands [7].

Nuclear phenomena span system (plant-wide), component (specific part), and meso (small part) scales. Codes:
System (RELAP, TRACE) for transients; subchannel (COBRA-TF, VIPRE) for local parameters; porous (CUPID);
CFD (ANSYS-CFX) for detailed flows [26,27]. Multi-scale coupling integrates these [29], addressing 1D
limitations with 3D effects.:

Computational Fluid Dynamics (CFD):

For innovative nuclear systems' coolants, experiments are expensive and measurements challenging, making
CFD an attractive complement for predicting flow characteristics. CFD solves the fundamental fluid physics
equations discretely on computers, capturing flow evolution in detail. For laminar flows with low Reynolds
numbers, equations can be solved directly. Turbulent flows are more complex.

Advantages of CFD include comprehensive domain analysis and enhanced result visualization. Real experiments
struggle with measuring wind direction, pollutant concentration, chemical reactions, and radiation. CFD applications
in energy include predicting NOx, SOx, and solid formation; slag on heating surfaces; surface temperature
optimization; abrasion-prone area identification; design verification; efficient air distribution; cost reduction via
computer testing; and product testing speed.

Direct Numerical Simulation (DNS):

DNS, popular among researchers despite high resource costs, uses the finest grid to resolve smallest eddy
structures, providing detailed flow visualization and accounting for turbulent eddy thermal energy. Turbulence is
nonlinear with broad spatial and temporal scales; large scales depend on geometry and boundaries, small on flow
itself. DNS resolves all relevant scales, increasing in realism with computing power, but not expected for practical
nuclear engineering soon [8]. Smallest scales estimated from Kolmogorov theory: the Kolmogorov length scale.

v\ (M)
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DNS, popular among researchers despite high resource costs, uses the finest grid to resolve smallest eddy
structures, providing detailed flow visualization and accounting for turbulent eddy thermal energy. Turbulence is
nonlinear with broad spatial and temporal scales; large scales depend on geometry and boundaries, small on flow
itself. DNS resolves all relevant scales, increasing in realism with computing power, but not expected for practical
nuclear engineering soon [8]. Smallest scales estimated from Kolmogorov theory: the Kolmogorov length scale.

Large Eddy Simulation (LES):

LES resolves large eddies in unsteady formulations using filtered equations, excluding subgrid eddies. Subgrid
turbulence models (e.g., Smagorinsky) approximate small eddies. Implicit LES (ILES) uses numerical dissipation
without explicit models, proposed by Belotserkovsky [25]. Detached Eddy Simulation (DES) combines RANS for
boundary layers and LES elsewhere, addressing coarse LES grids' inability to resolve wall layers [25].

LES advantages: Resolves eddy structures in detail, though costlier (more cells, smaller time steps). It computes
losses from turbulent regime, potentially universal for isotropic flows where macroscopic features dominate large
eddies. Limited to simple geometries due to high resource demands; uses high-order spatial discretization for
broader turbulence scales.

Reynolds-Averaged Navier-Stokes (RANS)

RANS uses Reynolds equations, decomposing instantaneous parameters into mean and fluctuating components.
Equations are unclosed, leading to various turbulence models (one- or multi-parameter). Most CFD packages
include RANS, making it common in engineering. Models lack universality, developed for specific task classes over
decades.
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Investigation of Heat and Mass Transfer in the Phenix Reactor

Phenix, built from 1968-1973 in Marcoule, France, achieved 580 MWth with a closed fuel cycle and breeding
ratio 1.16 [2]. It supported Generation IV R&D and waste transmutation. Operated by French (80%) and Italian
(20%) entities, it produced 24,440 GWh with availabilities around 40-45%.

RESEARCH RESULTS

Numerical Modeling of Sodium Mixing in Phenix T-Junction

The Phenix secondary circuit T-junction features a horizontal straight section, 90° elbow (radius 762 mm,
thickness 9.35 mm), and vertical straight with branch pipe (inner diameter 68 mm, thickness 2.5 mm) . Main pipe:
inner diameter 494 mm, thickness 7 mm. Normal operation: main sodium at 613 K, flow 800 kg/s (Re ~ 6 x 10°);
branch at 703 K, 7 kg/s (Re = 5 x 10%), AT =90 K.

A

branch pipe

main pipe

90° elbow

flow direction

- i
FIGURE 2. Schematic diagram of the T-junction in the "Fenix" secondary circuit

CFD modeling used Fluent with second-order implicit time-stepping, upwind convection, and SIMPLE pressure-
velocity coupling. RANS used Reynolds Stress Model (RSM); LES used Wall-Adapting Local Eddy-Viscosity
(WALE) with Pr _t = 0.85. Boundaries: outlet convection pressure, adiabatic walls. Inlet turbulence via vortex
method.

Three RANS grids: 0.5M cells (wall law), 3.5M cells (no-slip), 4.8M cells (conjugate heat transfer). LES on
4.8M grid.

RANS Results

Inlet conditions compared: constant velocity, developed profiles. Selected developed profile for realism.
Momentum ratio
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FIGURE 3. Mean velocity (m/s) in the T-junction for RANS simulation

Indicates reattaching jet. Upstream elbow skews velocity
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FIGURE 4. Mean temperature from RANS calculations along the main pipe wall outside the branch connection.
Temperature profiles along wall downstream of branch show fine grid and no-slip improving agreement, though
overprediction >3 Db. Conjugate heat transfer smooths profiles.
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FIGURE 5. Temperature profiles (K) downstream of the hot branch in RSM Calc-2 (without wall conduction)
and RSM Calc-3 (conjugate heat transfer) models
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Temperature contours show mixing zone to y/Db =16 center, y/Db =10 near wall.

1.75e+00
I 1.66e+00 = weld location

1.57e+00 b o

1.49e+00 r 4

1.40e+00
1.31e+00
1.22e+00
1.14e+00
1.05e+00
9.61e-01
8.74e-01
7.86e-01
6.99e-01
6.12e-01
524e-01
4.37e-01
3.50e-01
2.62e-01
1.75e-01
8.74e-02
0.00e+00

FIGURE 6. Turbulent kinetic energy (m?/s?) in the RSM Calc-3 simulation.

Turbulent kinetic energy peaks at shear layer and mixing zone, linking to fatigue cracks

LES Results
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FIGURE 7. Mean temperature from LES results along the main pipe wall downstream of the branch.

LES captures reattaching jet, better matching experimental temperature profiles, especially near inlet.
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FIGURE 8. Peak-to-peak temperature difference on the outer surface of the main pipe casing.
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Peak-to-peak fluctuations agree well.
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FIGURE 9. Temperature profiles at the liquid/solid interface

Interface temperature profiles show higher gradients than RANS.
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FIGURE 10. Contours of (a) mean temperature, (b) root mean square temperature, and (c) mean surface heat
flux at the liquid/solid interface.

Contours of mean temperature, RMS, and heat flux identify hot spot and high-fluctuation plume matching
experimental white/black spots and crack locations.

Modeling Mixing of Sodium Flows in LOGOS Software and Comparison with Experimental Data

Problem Setup.

FIGURE 11. Geometric model of the computational domain.
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Geometric model built in KOMPAS-3D: main pipe 494 mm diameter with 90°

branch 68 mm at 2600 mm from elbow. Imported to LOGOS for gridding.

TABLE 2. Mesh Parameters

elbow (radius 762 mm),

Grid No. Base Cell Size Number of Elements Number of Nodes
1 0.005 8,116,470 8,969,468
2 0.01 2,040,227 2,245,039
3 0.02 747,255 936,569
Boundary/initial conditions
TABLE 3. Calculation Parameters, Boundary and Initial Conditions
Parameter Value
Turbulence Model Reynolds Stress Model (RSM)
Sodium Flow Rate at Main Pipe Inlet, kg/s 800
Sodium Temperature at Main Pipe Inlet, K 613

Boundary Condition on Lateral Surfaces No-slip and Thermal Insulation
Outlet Boundary Condition Pressure Outlet (Subsonic)

Sodium Flow Rate at Branch Inlet, kg/s 7

Sodium Temperature at Branch Inlet, K 703

\lO\UI-Jle\Jb—-g

Simulation Results

RSM calc-2 RSM calc-3 0,01

0,02 0,005

FIGURE 12. Temperature (K) fields in the computational domain
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FIGURE 13. Velocity fields
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FIGURE 14. Pressure field in the computational domain

LOGOS yielded temperature velocity, and pressure fields.
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FIGURE 15. Sodium temperature field near the pipe surface

Near-wall temperature near T-junction.
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FIGURE 16. Temperature profile along the thermal wake for Grid #1
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Profiles along thermal wake compared to experiments
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FIGURE 17. Temperature profile along the thermal wake for Grid 2,
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FIGURE 18. Temperature profile along the thermal wake for Grid 3

TABLE 4. Comparison of Simulation Results with Experimental Data

y/Db T exp Grid 1 Grid 2 Grid 3
0.000 703.933 698.078 701.169 700.000
0.637 700.200 667.561 688.414 666.800
1.132 661.000 657.907 669.848 659.900
2.246 641.533 644.584 653.673 645.000
3.360 630.067 636.780 645.947 636.900
4.792 623.667 630.515 638.578 630.747
8.151 619.933 622.517 628.091 622.500

Statistical analysis: Relative deviation

_(5a— Dw) 3)
n — D *

where D* is maximum experimental temperature difference. Mean and standard deviation
TABLE 5. Statistical Analysis Results

y/Db Grid 1 Grid 2 Grid 3
0.000 -0.00832 -0.00393 -0.00560
0.637 -0.04661 -0.01683 -0.04770
1.132 -0.00468 0.01339 -0.00170

E; 2.246 0.00476 0.01892 0.00541
3.360 0.01066 0.02520 0.01085

4792 0.01098 0.02391 0.01136

8.151 0.00417 0.01316 0.00414

E -0.00296 0.01055 -0.00331

uE 0.02003 0.01548 0.02052

Profiles match qualitatively, with initial steeper drop in LOGOS, but good overall agreement

104N oraliyevy CAIPSS2025.docx M ainDocument AIPP Review COpy On/y 11



Auto-generated PDF by ReView V International Scientific and Technical Conference Actual Issues of Power Supply Systems

TK

f

—  loges001 @  Experiment Logos 0.02 Logos 005

FIGURE 19. Comparison of calculated temperature profiles with experimental data
CONCLUSIONS

RANS provides efficient initial estimates but underpredicts fluctuations; LES better captures dynamics for
fatigue assessment. LOGOS demonstrates capability for sodium mixing simulations, with grid-independent results
supporting its use in LMFR design. Conjugate heat transfer essential for accurate wall predictions. Findings align
with Phenix incidents, emphasizing CFD for safety. This work tested LOGOS on Phenix T-junction mixing,
achieving good experimental agreement. LOGOS is suitable for heat-mass transfer modeling in sodium-cooled
reactor circuits.
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