Analytical Solution to one Problem of Cooling Fiber Mass
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Abstract. To analyze the cooling process, a mathematical model is proposed in the form of a boundary value problem of a system of thermal conductivity equations to determine the spread of heat in the fibrous mass, presented in the form of a ball. Using the method of separated variables, an analytical solution to the proposed initial boundary value problem is obtained. The obtained results can be used to optimize technological processes of cooling raw cotton in order to minimize losses in fiber quality. The work is of interest to specialists in the field of thermal physics, fibrous materials processing technology and related fields related to the control of thermal processes in fibrous materials.
INTRODUCTION
During cooling, a complex, non-stationary heat and mass transfer process occurs in a cotton sack, determining its external and internal states. External processes are characterized by mass transfer from the sack's surface to the surrounding environment and heat exchange between the fiber mass and the environment.
The rate of heat transfer within the cotton sack is crucial for maintaining the quality of the fiber and seeds during cooling [1-6]. Therefore, we examined the problem of heat transfer within a cotton sack during cooling as a sphere.
METHOD OF RESEARCH


The problem of heat transfer in a fibrous mass can be expressed as follows: A spherical body of radius R is given, possessing the property of isotropy, with a known initial temperature distribution: , .
Convective heat exchange occurs within the body between the fibrous mass and the air according to Newton's law. It is necessary to find the radial temperature distribution of the fibrous mass and air at any given time.
Then, based on the laws of thermodynamics (Fourier’s and Newton's laws of heat conduction, conservation of energy, etc.), this problem can be formulated as a system of parabolic differential equations [7-15]:

  				 (1)
with initial


, 					(2
and boundary conditions


  				(3)




where  are the heat capacity, thermal conductivity, and density of the fibrous mass and air, respectively;  is the heat transfer coefficient between the fibrous mass and air;  is the temperature of the fibrous mass, air, and the external environment, respectively; and  is the initial temperature of the fibrous mass.
Let's make a change of variables 

. 					(4)
Then, we obtain the problem

 					(5)
where

				(6)

					(7)

. 				(8)
We seek the solution to problem (5) in the form

,					(9)

.					(10)
Let’s substitute them into the system (5)


, (11)

. (12)


Considering the orthogonality of the function 

.                                                (13)
We will receive

.		(14)
Because,

. 		(15)
So, we have a system of ordinary differential equations in the form

				(16)
where

,					(17)

,			(18)

.					(19)
We seek the solution of the homogeneous system (17) in the form 

.					(20)
Then, the characteristic equations have the form 

.						(22)
From here, we find

, 				(21)

.			(22)

Since , we introduce the notation 

.						(23)
The solution of the homogeneous system (17) has the form

,					(24)

,					(25)
where

  					(29

RESEARCH RESULTS
We write the solution of the inhomogeneous system as

 				(30)
Substituting into the equations, we obtain 

.					(31)
Solving this system, we find

			(32) 
From the initial conditions, we find 

.			(33)
Using the orthogonality condition 

.			(34)
From here, we find

   			(35)
Therefore, the solution to problem (1) has the form

, 				(36)

,					(37)

where  are calculated using formulas (29), (31) and (34).
Below in tables 1, 2 are presented the calculation results obtained for the following values of the parameters of the model under consideration [15].






For fiber: ;  ;  ; ;  ; .
Table 1 shows the experimental and calculated data on cooling raw cotton relative to the radius of the raw cotton lump at an initial fiber mass temperature of 70 0C, lump radii of 200 mm, 150 mm, 30 mm, air temperature of 10 0C and initial raw cotton moisture of 20%.

TABLE 1. Experimental and calculated data on cooling relative to the radius of a raw cotton lump
	R, mm
	200
	150
	30

	, a secund
	Experimental
	Calculations
	Experimental
	Calculations
	Experimental
	Calculations

	0
	

	70
	70
	70
	70
	70
	70

	50
	

	62
	63,36
	60
	61,81
	56
	57,71

	100
	

	46
	47,15
	41
	41,98
	24
	25,18

	150
	

	30
	30.98
	27
	28,31
	38
	38,96

	200
	

	21
	21,81
	19
	19,95
	16
	16,92



Table 2 shows the experimental and calculated data on cooling raw cotton relative to the density of raw cotton at an initial fiber mass temperature of 70 0C, lump density of 70; 160 va 200 kg/m3 and an initial raw cotton moisture content of 15%. Air temperature 10 0C.

Table 2. Experimental and calculated data on cooling relative to the density of raw cotton
	
, Density
	70 kg/m3
	160 kg/m3
	200 kg/m3

	, Time
	Experimental
	Calculations
	Experimental
	Calculations
	Experimental
	Calculations

	0
	

	70
	70
	70
	70
	70
	70

	20
	

	46
	46,96
	58
	59,01
	68
	69,11

	40
	

	28
	28,75
	40
	41,05
	57
	58,08

	60
	

	19
	19.91
	24
	24,61
	50
	50,82

	80
	

	
	20
	19,82
	41
	41,65

	100
	

	
	
	38
	38,52



An analysis of the results in Tables 1 and 2 shows that the lump diameter significantly influences the process intensity; i.e., as the lump diameter increases, the fiber cooling rate decreases sharply. The temperature difference in the seeds along the lump radius and the temperature difference between fibers and seeds located at equal distances from the lump surface are very large, leading to uneven cooling of the raw cotton components. To increase the seed cooling rate and achieve uniform drying, it is necessary to organize the cooling period for the raw cotton in a loosened state, i.e., to reduce the lump diameter whenever possible.
CONCLUSIONS
This paper presents an analytical study of the cooling problem of fibrous mass. Based on mathematical modeling of the heat transfer process, analytical solutions were obtained that allow us to describe the temperature distribution in the fibrous medium as a function of time and spatial coordinates.
The main results of the paper include:
1. Formulation of a mathematical model of the cooling process, taking into account the thermophysical properties of the fibrous mass, as well as the boundary and initial conditions.
2. Analytical solution of the problem using mathematical physics methods, such as separation of variables or integral transformations.
3. Analysis of the influence of parameters (thermal conductivity, heat capacity, material density) on cooling dynamics.
4. Practical significance of the obtained solutions, which can be used to optimize industrial processes related to the processing of fibrous materials.
The obtained results demonstrate that the analytical approach allows not only a qualitative description of the cooling process but also a quantitative assessment of the influence of various factors on its dynamics. This opens up opportunities for developing more effective methods for controlling thermal processes in fibrous materials.
In the future, a promising direction of research may be the consideration of nonlinear effects, such as the dependence of thermophysical properties on temperature, as well as numerical modeling for more complex geometric configurations and boundary conditions.
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