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Abstract. To analyze the cooling process, a mathematical model is proposed in the form of a boundary value problem of a 

system of thermal conductivity equations to determine the spread of heat in the fibrous mass, presented in the form of a 

ball. Using the method of separated variables, an analytical solution to the proposed initial boundary value problem is 

obtained. The obtained results can be used to optimize technological processes of cooling raw cotton in order to minimize 

losses in fiber quality. The work is of interest to specialists in the field of thermal physics, fibrous materials processing 

technology and related fields related to the control of thermal processes in fibrous materials. 

INTRODUCTION 

During cooling, a complex, non-stationary heat and mass transfer process occurs in a cotton sack, determining its 

external and internal states. External processes are characterized by mass transfer from the sack's surface to the 

surrounding environment and heat exchange between the fiber mass and the environment. 

The rate of heat transfer within the cotton sack is crucial for maintaining the quality of the fiber and seeds during 

cooling [1-6]. Therefore, we examined the problem of heat transfer within a cotton sack during cooling as a sphere. 

METHOD OF RESEARCH 

The problem of heat transfer in a fibrous mass can be expressed as follows: A spherical body of radius R is given, 

possessing the property of isotropy, with a known initial temperature distribution: ( )1 10,0T r T= , 

( )2 ,0 cT r T= . 

Convective heat exchange occurs within the body between the fibrous mass and the air according to Newton's law. 

It is necessary to find the radial temperature distribution of the fibrous mass and air at any given time. 

Then, based on the laws of thermodynamics (Fourier’s and Newton's laws of heat conduction, conservation of 

energy, etc.), this problem can be formulated as a system of parabolic differential equations [7-15]: 
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( )1 10,0T r T= , ( )2 ,0 cT r T=      (2 
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and boundary conditions 

( )1 , ,cT R T =  ( )2 , , ( 1)cT R T  = 
     (3)

 

where iiiс  ,,  are the heat capacity, thermal conductivity, and density of the fibrous mass and air, 

respectively;   is the heat transfer coefficient between the fibrous mass and air; 1 2, , cT T T −  is the temperature of 

the fibrous mass, air, and the external environment, respectively; and 10T −  is the initial temperature of the fibrous 

mass. 

Let's make a change of variables  

1 1 2 2,rT rT = = .      (4) 

Then, we obtain the problem 
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( ) ( )1 10 2,0 , , cr rT R rT  = =
     (7)

 

( ) ( ) ( )1 1 2 1, , , , 0, 0cR RT R RT      = = = .     (8) 

We seek the solution to problem (5) in the form 
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Let’s substitute them into the system (5) 
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Considering the orthogonality of the function sin
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We will receive 
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So, we have a system of ordinary differential equations in the form 

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 2 2

n n n n n

n n n n n

A q A B F

B q B B F

   

   

 + − =


 + − =

    (16) 

where 
2

1,2in i i

n
q a i

R




  
= + =  

   

,     (17) 

( )( ) ( ) ( )
( )2

1 1 1 1

1 1

2 12
1 1 1 1

n n n c

n c

T RR
F T

R n n

 
 

 

+ + + −
= − − − = − ,   (18) 

( )
( )1 2

2

2 1
1

n c

n

T R
F

n

 



+ −
= − .     (19) 

We seek the solution of the homogeneous system (17) in the form  
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Then, the characteristic equations have the form  
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From here, we find 
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Since 0in  , we introduce the notation  
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The solution of the homogeneous system (17) has the form 
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RESEARCH RESULTS 

We write the solution of the inhomogeneous system as 
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Substituting into the equations, we obtain  
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Solving this system, we find 
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From the initial conditions, we find  

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3

20

1

1 2 4

1 2

1

sin

sin 0

n n n c

n

n n n n n

n

n
r r T T

R

n
k k r

R


   


  



=



=


 + + = −  


  + + =

 





.   (33) 

Using the orthogonality condition  
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Therefore, the solution to problem (1) has the form 

( ) ( )1

1

sin

, n c

n

n
r

RT r A T
r



  


=

= + ,     (36) 

( ) ( )2

1

sin

, n c

n

n
r

RT r B T
r



 


=

= + ,     (37) 

where ( ) ( ),n nA B   are calculated using formulas (29), (31) and (34). 

Below in tables 1, 2 are presented the calculation results obtained for the following values of the parameters of the 

model under consideration [15]. 

For fiber: CT o7010 = ;  07,01 = ;  16001 =c ; 025,02 =R ;  5,2= ; CT o

C 10= . 
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Table 1 shows the experimental and calculated data on cooling raw cotton relative to the radius of the raw cotton 

lump at an initial fiber mass temperature of 70 0C, lump radii of 200 mm, 150 mm, 30 mm, air temperature of 10 0C 

and initial raw cotton moisture of 20%. 
 

TABLE 1. Experimental and calculated data on cooling relative to the radius of a raw cotton lump 
R, mm 200 150 30 

, a secund Experimental Calculations Experimental Calculations Experimental Calculations 

0 
1T  70 70 70 70 70 70 

50 
1T  62 63,36 60 61,81 56 57,71 

100 
1T  46 47,15 41 41,98 24 25,18 

150 
1T  30 30.98 27 28,31 38 38,96 

200 
1T  21 21,81 19 19,95 16 16,92 

 

Table 2 shows the experimental and calculated data on cooling raw cotton relative to the density of raw cotton at 

an initial fiber mass temperature of 70 0C, lump density of 70; 160 va 200 kg/m3 and an initial raw cotton moisture 

content of 15%. Air temperature 10 0C. 

 

Table 2. Experimental and calculated data on cooling relative to the density of raw cotton 
 , 

Density 

70 kg/m3 160 kg/m3 200 kg/m3 

, Time Experimental Calculations Experimental Calculations Experimental Calculations 

0 
1T  70 70 70 70 70 70 

20 
1T  46 46,96 58 59,01 68 69,11 

40 
1T  28 28,75 40 41,05 57 58,08 

60 
1T  19 19.91 24 24,61 50 50,82 

80 
1T   20 19,82 41 41,65 

100 
1T    38 38,52 

 

An analysis of the results in Tables 1 and 2 shows that the lump diameter significantly influences the process 

intensity; i.e., as the lump diameter increases, the fiber cooling rate decreases sharply. The temperature difference in 

the seeds along the lump radius and the temperature difference between fibers and seeds located at equal distances 

from the lump surface are very large, leading to uneven cooling of the raw cotton components. To increase the seed 

cooling rate and achieve uniform drying, it is necessary to organize the cooling period for the raw cotton in a loosened 

state, i.e., to reduce the lump diameter whenever possible. 

CONCLUSIONS 

This paper presents an analytical study of the cooling problem of fibrous mass. Based on mathematical modeling 

of the heat transfer process, analytical solutions were obtained that allow us to describe the temperature distribution 

in the fibrous medium as a function of time and spatial coordinates. 

The main results of the paper include: 

1. Formulation of a mathematical model of the cooling process, taking into account the thermophysical properties 

of the fibrous mass, as well as the boundary and initial conditions. 

2. Analytical solution of the problem using mathematical physics methods, such as separation of variables or 

integral transformations. 

3. Analysis of the influence of parameters (thermal conductivity, heat capacity, material density) on cooling 

dynamics. 
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4. Practical significance of the obtained solutions, which can be used to optimize industrial processes related to 

the processing of fibrous materials. 

The obtained results demonstrate that the analytical approach allows not only a qualitative description of the 

cooling process but also a quantitative assessment of the influence of various factors on its dynamics. This opens up 

opportunities for developing more effective methods for controlling thermal processes in fibrous materials. 

In the future, a promising direction of research may be the consideration of nonlinear effects, such as the 

dependence of thermophysical properties on temperature, as well as numerical modeling for more complex geometric 

configurations and boundary conditions. 
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