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Abstract. In this work, the diffusion coefficients of manganese in silicon were compared by doping the element 

manganese into silicon at 5 different temperatures (T=800, 850, 900, 950, 1000 ⁰C) using traditional diffusion and 

electrodiffusion methods. At temperatures between 800÷900 ⁰C, manganese atoms were observed to form positive ions 

by settling between the silicon nodes and diffusing towards the negative pole of the electrodiffusion device. At 

temperatures between 950÷1000 ⁰C, manganese atoms settle on the silicon nodes, forming negative ions, and diffusion 

towards the positive pole of the electrodiffusion device was observed. 

INTRODUCTION 

It is known that new technologies for doping impurity atoms into semiconductor materials allow improving the 

basic parameters of semiconductor materials. Therefore, there is a great deal of interest in new technologies for 

doping impurity atoms into semiconductor materials. Currently, there are several types of doping of impurity atoms 

into semiconductor materials. Examples of these include doping during semiconductor growth [1,2], diffusion [3-7], 

bombardment with high-energy ions [8-10], and doping using laser beams [11-13]. However, these methods have 

their advantages and disadvantages. Some doping methods, while providing high-quality and precise doping levels, 

require very expensive equipment and technology. While the method of bombardment with high-energy ions allows 

the introduction of high concentrations of impurity atoms into the surface layer of the sample, its main disadvantage 

is the disruption of the crystallinity of this surface layer. In the diffusion method, the solubility of impurity atoms in 

the semiconductor material and the presence of limiting values of the diffusion coefficient are considered [14-16]. 

As a solution to the disadvantages of these methods of doping impurity atoms into semiconductors, the authors 

propose a new method of doping (electrodiffusion) using an external electric field [17-19]. 

The introduction of silicon atoms into the volume of semiconductor materials under the influence of an electric 

field and the elucidation of the mechanism of their distribution are of great scientific and practical importance. It is 

known from the literature that in the traditional diffusion process, the impurity atoms move chaotically and are 

mainly in the form of positive ions. It is known that the diffusion parameters of the impurity atoms, for example; the 

diffusion coefficient, the solubility of the impurity atoms and their location in the crystal lattice, depend on the 

diffusion temperature and time [20-22]. Knowing the introduction of impurity atoms into silicon under the influence 

of an electric field and their distribution in volume allows obtaining very important scientific information. The 

method of doping dopant atoms into silicon in an electric field with a sufficiently high current density (J=25÷40 

A/cm2) significantly accelerates the penetration of dopant atoms into the silicon volume, and leads to a decrease in 

the diffusion temperature of dopant atoms by T~150÷200˚C compared to the traditional diffusion temperature. 
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RESEARCH METHODS  

For the study, monocrystalline p-Si silicon with a resistivity of ρ≈5 Ω·cm, doped with boron during growth by 

the Chokhral method, was selected. The sample dimensions were prepared in the form of 40×80×1 mm3. A thin 

layer of manganese (Mn) was formed on one side of these samples using a VUP-4 vacuum device. Two samples 

were glued together with the sides with the formed thin layer of manganese facing each other and placed in an 

electrodiffusion device (see Figure 1). When an electric current is passed through the samples, heating occurs due to 

resistance. The temperature values T=800, 850, 900, 950 1000 ⁰C were selected for the test. For comparison, the 

traditional diffusion method was also carried out at these temperatures (see Table 1). 

 

 
FIGURE 1. Schematic of a structure created for the diffusion of dopant atoms into silicon under the influence of an electric 

field: 1-Graphite; 2-sample; 3-thermocouple; 4-sample cooling unit; 5,6-electrodes; 7-cooler. 

 

TABLE 1. Thermoelectric parameters of samples alloyed with manganese intercalated atoms. 

№ 

Traditional 

diffusion 
Electrodiffusion 

T,°C I, A T,°C U, V l, mm (total thickness of two samples) 

1 800 35 800 3 2 

2 850 47 850 3 2 

3 900 60 900 3 2 

4 950 70 950 3 2 

5 1000 80 1000 3 2 

 

RESEARCH RESULTS AND DISCUSSION 

The samples were quenched in a special oil after electrodiffusion and conventional diffusion processes. The 

process was carried out in the same way for both methods (t=15 minutes). After the alloying process, the 

electrophysical parameters of the samples were measured using an HMS-3000 device. All measurements were 

carried out at room temperature (T=300 K). The diffusion coefficient of the manganese inclusion in silicon was 

calculated using the measured electrophysical parameters and equations (1), (2), (3) and (4) (see Tables 2 and 3). 
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TABLE 2. Research results of the sample placed on the negative pole of the electrodiffusion device 
T, ⁰C Traditional diffusion Only the effect of the electric 

field 

Diffusion under the influence of an electric 

field 

t, s 

x, mkm D, 10-7 

cm2/s  

DEP (μEL), 

10-7 cm2/s  

μ, 10-7 

cm2/(V·s) 

DED, 10-7 

cm2/s 

x–, 

mkm 

U, 

V 

l, 

cm 

E, V/cm 

800 272 2.067 5.433 1.81 7.5 260 3 0.2 15 900 

850 372.9 3.862 12.178 4.06 16.04 380 3 0.2 15 900 

900 496.3 6.843 23.157 7.719 30 520 3 0.2 15 900 

950 645 11.57 29.77 9.9 41.34 610 3 0.2 15 900 

1000 822 18.77 23.93 7.97 42.7 620 3 0.2 15 900 

 

Based on the results presented in Table 2, a temperature dependence graph was constructed for the diffusion 

coefficient (D) of manganese dopant atoms in silicon doped by the traditional diffusion method, the diffusion 

coefficient (DED) of manganese ions in silicon by the electrodiffusion method, and the diffusion coefficient (DEP) of 

manganese ions in silicon under the influence of an electric field only. 
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FIGURE 2. Temperature dependence of the diffusion coefficients of manganese in silicon: 1—conventional diffusion, 

D=D0·exp(-Q/(kT); 2—electric field effect only, DEP=μEL; 3—electrodiffusion, DED=D+DEP. 

 

It is clearly seen from Figure 2 that the diffusion coefficient of manganese doped in silicon by electrodiffusion is 

larger than that of conventional diffusion. However, when the temperature exceeds 950 ⁰C, the diffusion coefficient 

of manganese doped in silicon by electrodiffusion remains almost unchanged (line 3 in Figure 2). In this case, only 

under the influence of an electric field, we can see that the diffusion coefficient of manganese in silicon (line 2 in 

Figure 2) decreases at a temperature of 1000 ⁰C. In conventional diffusion, the diffusion coefficient of manganese in 

silicon increases linearly with increasing temperature (line 1 in Figure 2). 

To better understand this process, we are required to analyze the results of samples placed on the positive pole of 

an electrodiffusion device. 
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TABLE 3. Research results of the sample placed on the positive pole of the electrodiffusion device 

T, ⁰C Traditional 

diffusion 

Only the effect of the 

electric field 

Diffusion under the influence of an electric 

field 

t, s 

x, mkm D, 10-7 

cm2/s  

DEP (μEL), 

10-7 cm2/s  

μ, 10-7 

cm2/(V·s) 

DED, 10-7 

cm2/s 

x+, 

mkm 

U, 

V 

L, 

cm 

E, 

V/cm 

800 272 2.067 -1.842 -0.614 0.225 45 3 0.2 15 900 

850 372.87 3.862 -3.115 -1.0038 0.747 82 3 0.2 15 900 

900 496.3 6.843 -3.633 -1.211 3.21 170 3 0.2 15 900 

950 645 11.57 -0.754 -0.251 10.816 312 3 0.2 15 900 

1000 822 18.77 17.33 5.78 36.1 570 3 0.2 15 900 

 

The reason why the diffusion coefficient and ion mobility values in Table 3, which are only affected by the 

electric field, are less than zero, that is, negative, in the temperature range of 800÷950 ⁰C can be explained as 

follows. 

It is known [23-26] that manganese atoms in a sample placed on the positive pole of an electrodiffusion device 

diffuse from the negative pole to the positive pole due to the concentration difference under the influence of heat. 

However, the manganese atoms in the sample initially settle between the nodes of the silicon crystal lattice and form 

positive ions. Positive manganese ions move towards the negative pole under the influence of an electric field and 

inhibit the manganese atoms diffusing from the negative pole to the positive pole due to the concentration 

difference. As a result, the diffusion coefficient of manganese in silicon seems to decrease. 

Based on the results presented in Tables 2 and 3, a temperature dependence graph was constructed for the 

diffusion coefficient (D) of manganese impurity atoms in silicon in conventional diffusion, the diffusion coefficient 

(DEP) of manganese ions in a silicon sample placed on the negative pole of the electrodiffusion device, and the 

diffusion coefficient (DED) of manganese in a silicon sample placed on the positive pole of the electrodiffusion 

device. 
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FIGURE 3. Temperature dependence of the diffusion coefficients of manganese in silicon: 1—conventional diffusion; 2—

sample placed on the negative pole of the electrodiffusion device; 3—sample placed on the positive pole of the electrodiffusion 

device. 

It is clearly seen from Figure 3 that the diffusion coefficient of manganese in silicon in the sample placed on the 

negative pole of the electrodiffusion device is larger than the diffusion coefficients of manganese in the sample 
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placed on the positive pole of the electrodiffusion device by conventional diffusion and by electrodiffusion. We can 

see that the diffusion coefficient of manganese in the sample placed on the positive pole of the electrodiffusion 

device increases sharply with increasing temperature in the temperature range of 800÷1000 ⁰C. In addition, at a 

temperature of 950 ⁰C, it can be seen that the diffusion coefficients of manganese in the sample placed on the 

positive pole of the conventional diffusion [27-29] and electrodiffusion [30-32] devices become equal to each other 

(lines 1 and 3 in Figure 3). 

CONCLUSIONS 

Based on the results obtained, we will consider the diffusion mechanism of manganese in silicon by the 

electrodiffusion method. During the electrodiffusion process, manganese ions located in the silicon crystal lattice are 

simultaneously affected by the diffusion current (JD) and the electric field current (JEP) due to the concentration 

difference and temperature. 

1. In this case, since in the temperature range of 800÷900 ⁰C most of the manganese atoms are mainly located 

between the nodes of the silicon crystal lattice and form positive ions, the directions of the diffusion current (JD) and 

the electric field current (JEP) acting on the positive ions of manganese in the sample placed on the positive pole of 

the electrodiffusion device are opposite to each other (see Figure 4). 

 

JED=JD – JEP                                                                                 (5) 

The directions of the diffusion current (JD) and the electric field current (JEP) acting on the positive ions of 

manganese in a sample placed on the negative pole of the electrodiffusion device are the same (see Figure 4). 

 

JED=JD + JEP                                                                                      (6) 

 

 
FIGURE 4. The mechanism of diffusion of manganese element into silicon by electrodiffusion at temperatures 

between 800÷900 ⁰C 

 

2. In the temperature range of 950÷1000 ⁰C, since most of the manganese atoms are located mainly at the nodes 

of the silicon crystal lattice and form negative ions, the directions of the diffusion current (JD) and the electric field 

current (JEP) acting on the negative ions of manganese in the sample placed on the positive pole of the 

electrodiffusion device are the same (see Figure 5). 

 

 
FIGURE 5. The mechanism of diffusion of manganese element into silicon by electrodiffusion at temperatures 

between 950÷1000 ⁰C 
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The directions of the diffusion current (JD) and the electric field current (JEP) acting on the negative ions of 

manganese in the sample placed on the negative pole of the electrodiffusion device are opposite to each other (see 

Figure 5). 

3. Compared to traditional diffusion, the diffusion coefficient of Mn ions under the influence of an electric field 

in the electrodiffusion method was found to be on average ~4 times greater at temperatures T=800÷900 ⁰C and on 

average 2.5÷3.5 times greater at temperatures T=950÷1000 ⁰C. 

4. The new electrodiffusion method of alloying is very promising because it requires less energy compared to the 

traditional diffusion method [33,34]. 
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