

Electrodiffusion Method of Doping Silicon with Manganese

Bobir Isakov ^{a)}, Khalmurat Iliev, Zafar Xudoynazarov, Kutbiddin Ayupov, Kutbiddin, Giyosiddin Kushiev, Bakhrom Abdurkhamanov, Islambek Kazakbaev

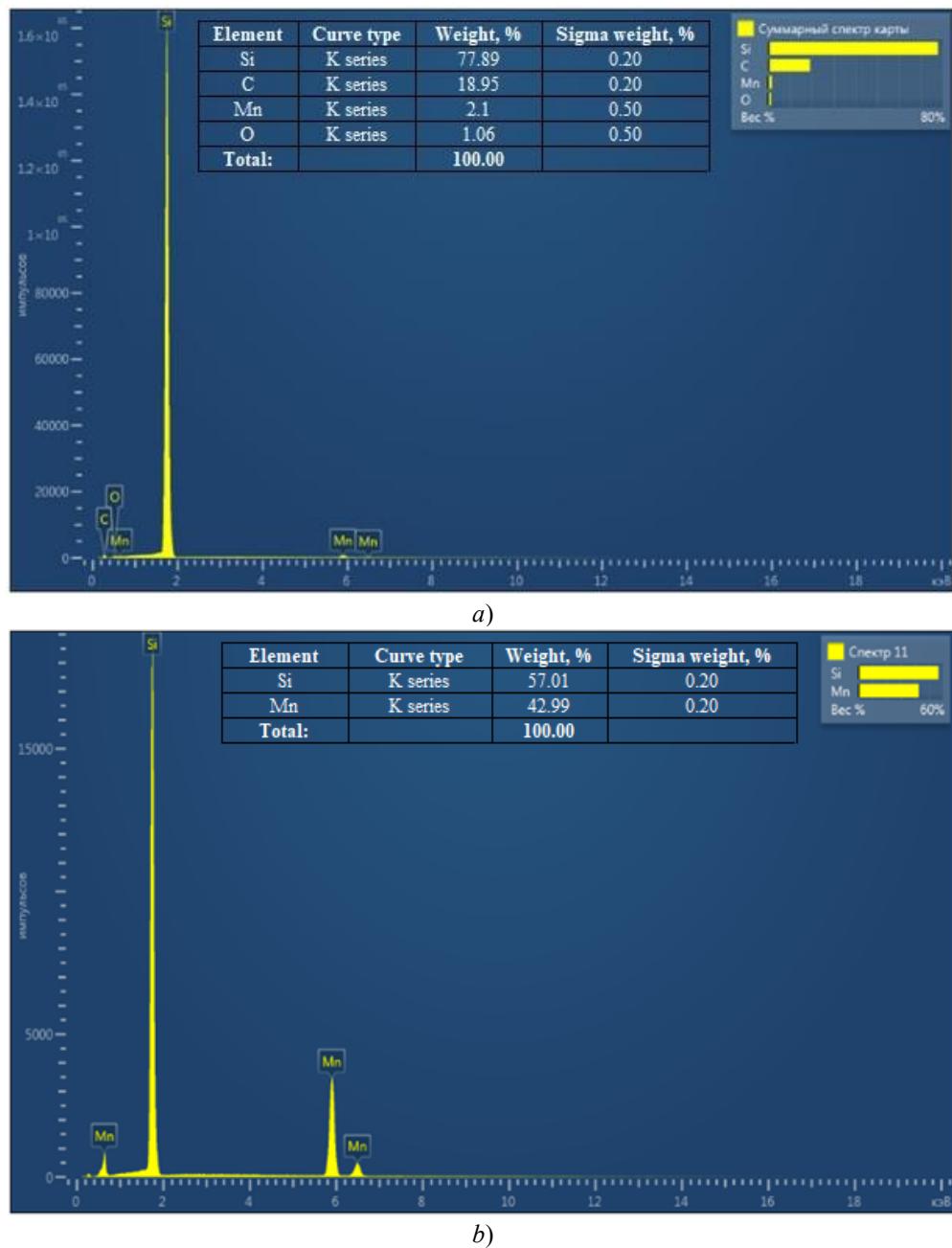
Tashkent state technical university named after Islam Karimov, Tashkent, Uzbekistan

^{a)} Corresponding author: bobir6422isakov@gmail.com

Abstract. In this work, elemental analysis was performed, and electrophysical and photoelectric properties of silicon samples doped with Mn atoms by electrodiffusion were studied. The parameters and properties of samples obtained by introducing Mn atoms into silicon by electrodiffusion in the temperature range of 800-900 °C repeated the results obtained using traditional thermal diffusion technology in the temperature range of 1000-1100 °C. It can be concluded that there is a possibility of increasing the solubility of Mn in silicon using the electrodiffusion method.

INTRODUCTION

In the works of the authors [1,2], the photoelectric properties of silicon samples with nanoclusters of manganese atoms were studied. Anomalous photoelectric phenomena were observed in these samples. The authors [3, 4] associate these phenomena with the presence of nanoclusters of impurity manganese atoms formed during the interaction with boron atoms in silicon. Moreover, with an increase in the boron concentration, the number of BMnn type nanoclusters increases and the influence of nanoclusters on the electrophysical and photoelectric properties of silicon samples increases [5, 6, 7]. Further development of this direction requires the development of new methods for increasing the solubility of manganese atoms in silicon.


The concentration of manganese atoms can be increased using ion alloying technology [8] and the electrodiffusion process, which, unlike thermal diffusion [9-14], involves a unidirectional rapid transfer of impurity atoms. Therefore, the study of the formation of nanoclusters and their influence on the photoelectric properties of silicon, when doping silicon [15-19] with impurity atoms of manganese under the influence of an external electric field, is both scientifically and practically relevant.

EXPERIMENTAL RESEARCH

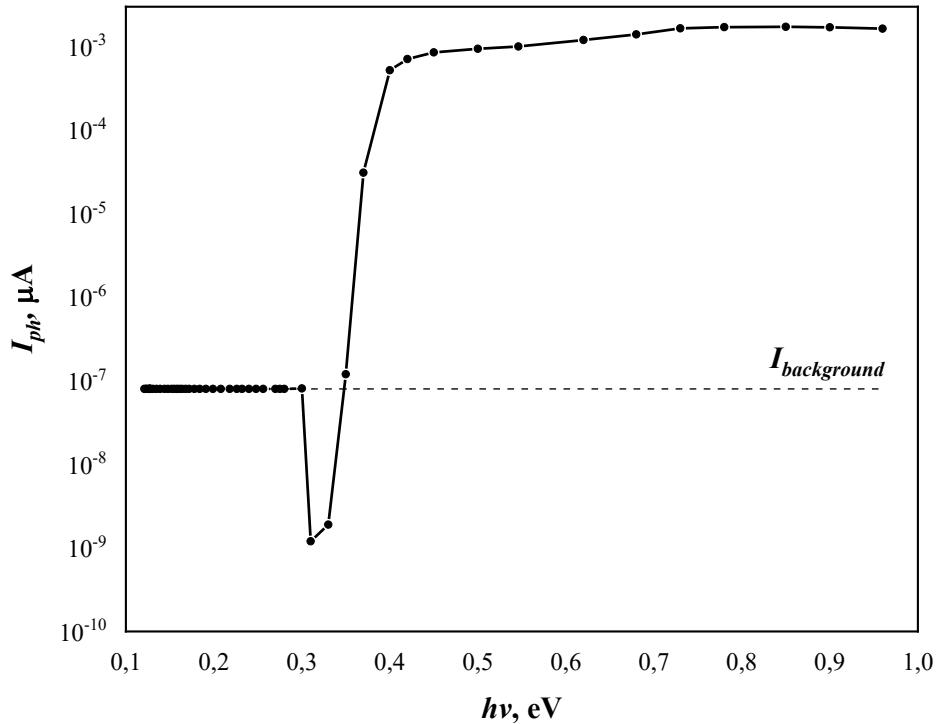
Single-crystal silicon of the *p*-Si brand ($N_B \approx 5 \times 10^{15} \text{ cm}^{-3}$) was used as the starting material. Samples were cut to dimensions of $5 \times 10 \times 1 \text{ mm}^3$ and, to clean the surface of the silicon samples, they were subjected to mechanical treatment and chemical etching in an acid etchant. After this, a thin layer of metallic manganese was formed on the surface of the samples using thermal evaporation in a VUP-4 vacuum unit.

Table 1. Specific resistance of samples

Samples	$\rho, \text{Om} \cdot \text{sm.}$	
	«Positive»	«Negative»
Original	4-6	4-6
Control	4-6	4-6
batch 1 Si<B,Mn>	$1.50 \cdot 10^2$	$1.33 \cdot 10^3$
batch 2 Si<B,Mn>	$1.02 \cdot 10^2$	$1.21 \cdot 10^3$
batch 3 Si<B,Mn>	$7.82 \cdot 10^1$	$1.07 \cdot 10^3$
batch 4 Si<B,Mn>	$7.57 \cdot 10^1$	$8.91 \cdot 10^2$

Fig. 1. Elemental analysis of silicon samples obtained by electrodiffusion: a) - “positive” sample, b) - “negative” sample.

Two silicon samples were placed with the metallized surfaces facing each other and placed in an electrodiffusion setup. Electrodiffusion was carried out in a vacuum of no worse than 10^{-2} mm Hg. In this case, the positive pole of the electrodiffusion device was connected to one of the samples (the “positive” sample), and the negative pole to the other (the “negative” sample).


The electrodiffusion process was carried out for $t=25-30$ minutes with a direct current density of $J=60-70$ A/cm 2 , during which the samples were heated to a temperature of $T=800-900$ °C. After completion of the electrodiffusion process, the samples were rapidly cooled by immersion in silicone oil and then chemically cleaned. The

electrodiffusion process was repeated in 4 batches with identical electrodiffusion conditions and electrophysical parameters of the samples (a total of 8 samples were obtained).

The specific resistance of the samples (Table 1) was determined using the four-probe method on an RM 3000+ installation from Jandel.

From Table 1 it is evident that the specific resistance of the samples connected to the negative pole of the electrodiffusion device is greater than the specific resistance of the samples placed on the positive pole.

It is known that manganese in silicon at high temperatures diffuses (exists) predominantly in the form of interstitial positive ions, therefore, under the influence of an electric field, there is a preferential transfer of positive manganese ions into silicon connected to the negative pole of the electrodiffusion device. As a result, manganese atoms compensate for boron atoms, and their excess forms complexes (nanoclusters) of the BMn n type, where $n \leq 4$. From the analysis of the research results it was established that the specific resistance of the samples placed on the negative pole of the electrodiffusion device increased due to compensation. The specific resistance of the samples placed on the positive pole of the electrodiffusion device increased less as a result of thermal diffusion of impurity manganese atoms. The elemental composition of the obtained silicon samples was studied using a DJ-SEM 150D-ST scanning electron microscope (Fig. 1). Figures 1a and 1b show the results of elemental analysis of samples placed on the positive and negative poles, respectively. The tables below the EDS spectra provide numerical data from the elemental analysis. These results confirmed that the concentration of manganese impurity atoms was higher in the silicon sample placed at the negative pole of the electrodiffusion apparatus.

Fig.2. Infrared quenching of photoconductivity of silicon samples with manganese atom nanoclusters at $T=100$ K ($\rho=1 \cdot 10^3$ Ohm·cm).

Calculations showed that in silicon samples placed at the negative pole of the electrodiffusion setup, the atomic fraction of manganese was $\sim 75.4\%$, while in silicon samples placed at the positive pole, this figure was $\sim 2.7\%$.

The photoelectric properties of silicon samples placed on the negative pole of an electrodiffusion device were studied using an IKS-21 spectrometer. Experiments were conducted at a temperature of $T=100$ K (Fig. 2). Figure 2 shows the spectral dependence of the photoconductivity of silicon samples doped with manganese impurity atoms, obtained with additional illumination by weak background integral light. The spectral photoresponse was calculated by subtracting the background light photocurrent. As can be seen from Fig. 1, photosensitivity begins at photon energies of $h\nu \sim 0.16$ eV and increases continuously with incident photon energy. This process reaches a maximum at $h\nu \sim 0.3$ eV.

A further increase in photon energy leads to a sharp decrease in photocurrent, i.e., IR quenching of the photocurrent is observed. This significantly reduces the photocurrent (by up to two orders of magnitude). Starting at $h\nu=0.35$ eV, the photocurrent increases sharply and reaches its maximum value already at $h\nu=0.8$ eV. Thus, in the spectral region of $h\nu=0.4\div0.8$ eV, these samples exhibit high-magnitude subband (possibly impurity) photoconductivity. This subband photoconductivity was observed even without background illumination. The phenomenon of infrared quenching was observed in all silicon samples located at the negative pole. According to the two-level model of IR quenching photoconductivity (IQPP) [20-24], photogeneration and carrier recombination, as well as the reorganization of sensitization centers, occur under the influence of integral background light. As a result, a sensitizing effect is observed. Additional illumination of the samples with IR light, with a photon energy equal to the ionization energy of the sensitization center, leads to the reverse process, resulting in a decrease in the photocurrent; that is, the IRCG effect occurs.

CONCLUSIONS

The parameters and properties of the samples obtained by introducing manganese atoms into silicon using the electrodiffusion method in the temperature range $T=800\div900$ °C repeated the results obtained by the authors in [25-28] using traditional thermal diffusion technology in the temperature range $T=1000\div1100$ °C. From this, it can be concluded that it is possible to increase the solubility of impurity manganese atoms in silicon using the electrodiffusion method.

Photoelectric properties of silicon samples with manganese atom nanoclusters demonstrate that the electrical and photoelectric properties [29-33] of the original material (silicon) can be significantly altered by the formation of manganese impurity atom nanoclusters. To elucidate the physical processes occurring in these materials, more detailed studies are needed, depending on the nature, structure, composition, and concentration of the resulting nanoclusters in silicon.

REFERENCES

1. M.K. Bakhadyrkhanov, S.B. Isamov, N.F. Zikrillaev, and M.O. Tursunov, "Anomalous Photoelectric Phenomena in Silicon with Nanoclusters of Manganese Atoms," *Semiconductors*, 55(6), 542–545 (2021). <https://doi.org/10.1134/S1063782621060038>
2. M.K. Bakhadyrkhanov, G.Kh. Mavlonov, S. B. Isamov, Kh. M. Iliev, K S. Ayupov, Z.M. Saparniyazova, and S. A. Tachilin, *Inorg. Mater.* 47, 479 (2011).
3. M.K. Bakhadyrkhanov, K. S. Ayupov, Kh. M. Iliev, G. Kh. Mavlonov, and O. E. Sattorov, *Tech. Phys. Lett.* 35, 741 (2009).
4. G.V. Gadiyak, Diffusion of boron and phosphorus in silicon during high-temperature ion implantation, *Semiconductors* 31 (4), April 1997.
5. M.K. Bakhadyrkhanov and S. B. Isamov, *Tech. Phys.* 61, 458 (2016). A. Rose, *Concepts in Photoconductivity and Allied Problems* (Wiley, New York, 1963).
6. N.F. Zikrillaev, G.H. Mavlonov, L. Trabzon, S.B. Isamov, Y.A. Abduganiev, Sh.N. Ibodullaev, G.A. Kushiev. Magnetic Properties of Silicon Doped with Impurity Atoms of Europium. *Journal of Nano- and Electronic Physics.* (2023), 15, 6, 06001. DOI:10.21272/jnep.15(6).06001
7. Kh.M. Iliev, S.V. Koveshnikov, B.O. Isakov, E.Zh. Kosbergenov, G.A. Kushiev, Z.B. Khudoynazarov. The Elemental Composition Investigation of Silicon Doped with Gallium and Antimony Atoms. *Surface Engineering and Applied Electrochemistry*, (2024), 60, 4, pp. 633 – 639. DOI: 10.3103/S106837552470025X
8. G.A. Kushiev, B.O. Isakov, U.X. Mukhammadjonov. The Prospects of Obtaining a New Material with a Hetero-Baric Structure Ge_xSi_{1-x} -Si Based on Silicon for Photo Energy Applications. *Journal of Nano- and Electronic Physics.* (2024), 16, 3, 03003. DOI: 10.21272/jnep.16(3).03003
9. N.F. Zikrillaev, F.E. Urakova, A.R. Toshev, G.A. Kushiev, T.B. Ismailov, Y.A. Abduganiev, N. Norkulov. Physical and magnetic properties of silicon doped with impurity germanium atoms. *East European Journal of Physics.* (2025), 1, pp. 184 – 189. DOI:10.26565/2312-4334-2025-1-18
10. N.F. Zikrillaev, Kh.M. Iliev, G.A. Kushiev, S.B. Isamov, S.V. Koveshnikov, B.A. Abdurakhmanov, B.O. Isakov. Study Of Photocells Based On Ge_xSi_{1-x} Stuctures. *Journal of Applied Science and Engineering.* (2026), 29, 3, pp. 685 – 691. DOI:10.6180/jase.202603_29(3).0019

11. N.F. Zikrillaev, M.K. Khakkulov, B.O. Isakov. The mechanism of the formation of binary compounds between Zn and S impurity atoms in Si crystal lattice. *East European Journal of Physics*. (2023), 4, pp. 177 – 181. DOI: 10.26565/2312-4334-2023-4-20

12. N.F. Zikrillayev, S.B. Isamov, B.O. Isakov, T. Wumaier, Liang, Li wen, J.X. Zhan, T. Xiayimulati. New Technological Solution for the Tailoring of Multilayer Silicon-based Systems with Binary Nanoclusters Involving Elements of Groups III and V. *Journal of Nano- and Electronic Physics*. (2023), 16, 6, 06024. DOI:10.21272/jnep.15(6).06024

13. Kh.M. Iliev, N.F. Zikrillaev, K.S. Ayupov, B.O. Isakov, B.A. Abdurakhmanov, Z.N. Umakhdodjaeva, L.I. Isamiddinova. Effect of GaSb Compound on Silicon Bandgap Energy. *Journal of Nano- and Electronic Physics*. (2024), 16, 2, 02004. DOI: 10.21272/jnep.16(2).02004

14. X.M. Iliyev, Z.B. Khudoynazarov, B.O. Isakov, M.X. Madjitol, A.A. Ganiyev. Electrodifusion of manganese atoms in silicon. *East European Journal of Physics*. (2024), 2, pp. 384 – 387. DOI: 10.26565/2312-4334-2024-2-48

15. B.O. Isakov, X.M. Iliyev, Z.B. Khudoynazarov, G.A. Kushiev. Effective charge of Mn and Ni impurity atoms in silicon under the influence of an external electric field. *East European Journal of Physics*. (2025), 2, pp. 215 – 219. DOI: 10.26565/2312-4334-2025-2-23

16. G.H. Mavlonov, Kh.Kh. Uralbaev, B.O. Isakov, Z.N. Umakhdodjaeva, Sh.I. Hamrokulov. Diffusion distribution of Cr and Mn impurity atoms in silicon. *East European Journal of Physics*. (2025), 2, pp. 237 – 241. DOI:10.26565/2312-4334-2025-2-27

17. X.M. Iliyev, S.B. Isamov, B.O. Isakov, U.X. Qurbanova, S.A. Abduraxmonov. A surface study of Si doped simultaneously with Ga and Sb. *East European Journal of Physics*, (2023), 3, pp. 303-307. DOI:10.26565/2312-4334-2023-3-29

18. B.I. Boltaks and T.D. Dzhafar, The Effect of Applied Electric Field on Diffusion of Impurities in Gallium Arsenide. *phys. stat. sol.* 19, 705 (1967)

19. D. Senk, and G. Borchardt, “Solubility and Diffusivity of Manganese in Silicon at High Temperatures,” *Mikrochimica Acta*, 80, 477–490, (1983). <https://doi.org/10.1007/BF01202026>

20. N.A. Arutyunyan, A.I. Zaitsev, N.G. Shaposhnikov, and S.F. Dunaev, “The Thermodynamic Properties of Solid Solutions of Manganese and Iron in Silicon”, *Russian Journal of Physical Chemistry A*, 84(9), 1498–1501 (2010). <https://doi.org/10.1134/S0036024410090086>

21. X.M. Iliyev, V.B. Odzhaev, S.B. Isamov, B.O. Isakov, B.K. Ismaylov, K.S. Ayupov, Sh. I. Hamrokulov, S.O. Khasanbaeva. X-ray diffraction and Raman spectroscopy analyses of GaSb-enriched Si surface formed by applying diffusion doping technique. *East European Journal of Physics*, (2023), 3, pp. 363-369. DOI: 10.26565/2312-4334-2023-3-38

22. B.A. Abdurakhmanov, A.Sh. Movlyanov, U.Kh. Sodikov, N. Norkulov. New materials for solar elements on the basis of silicon with CdS and ZnS quantum dots. *Elektronnaya Obrabotka Materialov*, (2005), 4, pp. 89-92.

23. B.A. Abdurakhmanov, M.K. Bakhadyrkhanov, Kh.M. Iliev, S.A. Tachilin, A.R. Toshev. Effect of stress on the Si solar cell parameters. *Applied Solar Energy* (English translation of *Geliotekhnika*), (2005), 41, 2, pp. 65-67.

24. B.A. Abdurakhmanov, Kh.M. Iliev, S.A. Tachilin, A.R. Toshev. Silicon solar cells with Si-Ge microheterojunctions. *Russian Microelectronics*. (2012), 41, 3, pp. 169-171. DOI: 10.1134/S1063739712020023

25. B.A. Abdurakhmanov, Kh.M. Iliev, S.A. Tachilin, A.R. Toshev, B.E. Egamberdiev. The effect of silicon-germanium microheterojunctions on the parameters of silicon solar cells. *Surface Engineering and Applied Electrochemistry*, (2010), 46, 5, pp. 505-507.

26. M.K. Bakhadyrkhanov, Kh.M. Iliev, S.A. Tachilin, S.S. Nasriddinov, B.A. Abdurakhmanov. Impurity photovoltaic effect in silicon with multicharge Mn clusters. *Applied Solar Energy* (English translation of *Geliotekhnika*), (2008), 44, 2, pp. 132-134. DOI:10.3103/S0003701X08020151

27. F.A. Trumbore, “Solid Solubilities of Impurity Elements in Germanium and Silicon”, *The Bell system technical journal*, 39, 205-233, (1960). <https://doi.org/10.1002/j.1538-7305.1960.tb03928.x>

28. H. Nakashima, and K. Hashimoto, “Deep impurity levels and diffusion coefficient of manganese in silicon,” *Journal of Applied Physics*, 69, 1440 (1991). <https://doi.org/10.1063/1.347285>

29. N.F. Zikrillaev, G.A. Kushiev, S.V. Koveshnikov, B.A. Abdurakhmanov, U.K. Qurbanova, A.A. Sattorov. Current status of silicon studies with Gex Si_{1-x} binary compounds and possibilities of their applications in electronics. *East European Journal of Physics*, (2023), 3, pp. 334-339. DOI:10.26565/2312-4334-2023-3-34

30. N.F. Zikrillaev, S.V. Koveshnikov, S.B. Isamov, B.A. Abdurahmonov, G.A. Kushiev. Spectral dependence of the photoconductivity of Ge xSi_{1-x} type graded-gap structures obtained by diffusion technology. *Semiconductors*, (2022), 56, 1, pp. 29-31. DOI:10.1134/S1063782622020191

31. M.K. Bakhadyrkhanov, Kh.M. Iliev, K.S. Ayupov, B.A. Abdurakhmonov, P.Yu. Krivenko, R.L. Khholmukhamedov. Self-organization of nickel atoms in silicon. *Inorganic Materials*, (2011), 47, 9, pp. 962-964. DOI: 10.1134/S0020168511090020

32. N.F. Zikrillaev, G.A. Kushiev, S.B. Isamov, B.A. Abdurakhmanov, O.B. Tursunov. Photovoltaic Properties of Silicon Doped with Manganese and Germanium. *Journal of Nano- and Electronic Physics*, (2023), 15, 1, 01021. DOI:10.21272/jnep.15(1).01021

33. Kh.M. Iliev, K. A. Ismailov, E. Zh. Kosbergenov, V. B. Odzhaev, V. S. Prosolovich, Yu. N. Yankovsky, Z. T. Kenzhaev, B. O. Isakov, and G. A. Kushiev, The Influence of γ -Irradiation on the Electrophysical Parameters of Nickel-Doped Silicon Grown by the Czochralski Method // *Surface Engineering and Applied Electrochemistry*, 2025, Vol. 61, No. 6, pp. 851–856. <https://doi.org/10.3103/S1068375525700942>