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Аbstract. In this article, we consider how the wave-based approach to disturbance modeling, combined with modern control ideas and the concept of state variables, can be used in designing various highly efficient closed loop regulators. These regulators, called “disturbance-adapting regulators,” ensure high quality system control over a wide range of both transient and steady disturbances acting on the system. In practice, the last subset often turns out to be empty (sometimes none of the disturbance components can be directly measured). The ability to effectively counteract disturbances even when they cannot be directly measured is one of the most important features of disturbance adapting regulators.
INTRODUCTION
In real control systems, it is rarely possible to obtain real time direct measurements of all system state variables..
Real time direct measurement of all disturbance components, is also difficult or sometimes impossible. Thus, the developed regulator theory is based on the assumption that the regulator functions using only three conditions:
1)  real time measurements of output variables in equation (1);
2)  currently known set points and control (command) signals;
3)  real time measurements of a subset of disturbance components. .
There are three viewpoints a designer may adopt regarding disturbances in control tasks. He may take the usual viewpoint that disturbances negatively influence system behavior. In that case, optimal disturbance suppression is achieved if the regulator is designed to eliminate the influence of any disturbances on the system [1-3].
Thus arise a special class of regulators called disturbance absorbing regulators. In some cases, the structure of the system does not allow full elimination of disturbance influence. Then the designer may instead seek to minimize disturbance effects, leading to disturbance minimizing regulators [4,11].
Finally, the designer may take an optimistic viewpoint that some disturbances can sometimes affect the system beneficially. In this case, optimal regulation is achieved by using all potentially useful disturbance effects — regulators that use disturbances. In some systems, requirements may lead to a combination of these three types, forming multifunctional disturbance adapting regulators [5,6,16].
METHODS
To ensure maximum generality, we begin with a general mathematical model for a multidimensional (possibly time varying) linear system
:
					(1)
where   – is the state vector,  – is the input vector,  –is the disturbance vector, and – is the output vector [17]. The matrices   are assumed to known. Of course, in specific cases, some of these matrices may be constants (or perhaps even bullets). The inclusion of terms in expression (1) for the output variable is explained by the fact that designers often use accelerometers as output sensors [7,8].
Disturbances ω(t)=[ω1(t)..., ωp(t)], have wave like structure and can be modeled using the disturbance state model: 

					(2)
where )is the “disturbance state. Matrices  in equation (2) are assumed known. The matrices  and  in equation (2) are zero in most practical cases, but their inclusion in the general model (2) allows the designer to take into account the (rare) cases of the presence of (linearized) “state-dependent disturbances” described in Section. The matrix  is most important since it captures the wave dynamics observed experimentally.  The matrix  shows how the various basis functions  generated by equation (2) are linearly combined to form a system of real components of disturbances . Similarly the matrices  and   in equations (1) show how each component of the disturbance  enters into the system dynamics equation. As established in Section 2, the disturbance model (2) can effectively describe virtually any disturbance of the wave structure  that may be encountered in the design of real control systems [9,10].
RESULT AND DISCUSSION
If disturbances w(t) in (1) have wave structure described by (2), a state estimator can be built that provides real time estimates of the disturbance state z(t). Such an estimator uses measurements of y(t), u(t), and measurable components of w(t). A combined estimator can be constructed to estimate both x(t) and z(t):
 					 (3)
where  ,   denote the current estimates of х(t)., z(t obtained from a combined state builder that operates on the basis of data on y(t) from equation (2), the control and (t), and any measured disturbance components. Provided that the estimation errors
   и      quickly tend to zero compared to the settling time of the entire system, the physically implemented controller (3) is a good engineering approximation of the control law [12,16].
A simple form of a combined state builder. State builders can be designed in various forms. One of the simplest forms of a combined state builder for the system and disturbance model (2) is defined as follows [15,16]. Suppose that the number of components (subset) of disturbances , that can be directly measured is ,  and they are denoted by   ; the subset is expressed using the common disturbance vector    in the form 
,                                                     (4)
where J   matrix of rank . Note that if none of the components of the disturbances  is measurable, then we simply need to set. Now we denote
                                                             (5)
Then the combined disturbance plotter for equations (1) and (2) is defined as follows:

     (6)

where K ,L, M, R, N, F, G, , P, J, Q, S –the same matrices as in equations (1), (2), and (5). The symbols y,  and u  in equation (6) denote, respectively, the current measured values of the system output variable vector (1), the measured disturbance elements (4), and the control input variable (1). Matrices   in equation (6) are selected by the designer based on stability considerations discussed below. Block diagram of the combined state builder described by equation (6) [13,15].
The quality of the estimates  ,   , performed by state builder (49), can be judged based on the analysis of the dynamic behavior of the combined state vector   .  From equations (42) and (43) it follows directly that are described by a system of  first-order differential equations:

                            (7) 

CONCLUSIONS
Complete absorption of disturbances. To completely eliminate the influence of disturbances  on the behavior of system (1), control u must counteract the influence of the terms   and  and simultaneously control the state   [and/or y]  in the desired manner. To achieve this, we assume that the overall control action u is split into two parts:
 .  						(8)
The component   is assigned the task of absorbing disturbances , and the component  is assigned the task of the required control of the state  and/or variable   (thus,  performs the main control task). Then, substituting expression (8) into equation (1), we obtain [below, the argument t in the matrices is sometimes omitted for the sake of simplicity of notation];

					(9)
From equations (9) it follows that for complete absorption of disturbances the value of  must be chosen so that the equations are satisfied
							(10)
for all possible disturbance vectors . The range of possible values    is given by equation (2) where  arbitarary  vector, and  arbitarary   vector. Thus, using equation (2), we can express the projection conditions (60) in the form
					(11)
where  arbitrary. A necessary and sufficient condition for the existence of a control  . Satisfying equation (11) has the form
					(12)
Further, satisfaction of the criterion of complete absorption (12) means that
					  	
for some matrix G. The most general form of the “solution” of equation (11) with respect to the control  of the absorbing disturbance is given in the work [11]:
 			(13)
where any matrix from the family can be chosen as 
			(14)
[bookmark: _Hlk218077533]Here   – completely arbitrary matrix of (real) parameters. The symbol  in equation (14) denotes the well-known generalized Moore–Penrose inversion of the matrix   usually, the designer chooses the coefficient matrix G such that ||  || is minimal in some sense. Choosing  in equation (14) leads to a particular solution , in which each column of the matrix  has the minimum possible norm. Note that if 

then (the bar indicates transposition)

and equation (14) automatically gives the unique solution .
The calculation of  for other cases is described by Kalman and Englar [16].
Thus, the main criterion for achieving complete absorption of disturbances  in model (2) is expressed by equation (12). Equations (13) and (14) define “regulators adapting to disturbances”, which ensures complete absorption of disturbances; in practice, equation (13) can be implemented in the form
 			(15)
where   are generated by the combined state builder.
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