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Аbstract. In this article, we consider how the wave-based approach to disturbance modeling, combined with modern 

control ideas and the concept of state variables, can be used in designing various highly efficient closed loop regulators. 

These regulators, called “disturbance-adapting regulators,” ensure high quality system control over a wide range of both 

transient and steady disturbances acting on the system. In practice, the last subset often turns out to be empty (sometimes 

none of the disturbance components can be directly measured). The ability to effectively counteract disturbances even when 

they cannot be directly measured is one of the most important features of disturbance adapting regulators. 

INTRODUCTION 

In real control systems, it is rarely possible to obtain real time direct measurements of all system state 

variables.{𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑝(𝑡)} . 

Real time direct measurement of all disturbance components{𝜔1(𝑡),  𝜔2(𝑡), … , 𝜔𝑝(𝑡)}, is also difficult or 

sometimes impossible. Thus, the developed regulator theory is based on the assumption that the regulator functions 

using only three conditions: 

1)  real time measurements of output variables{𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑚(𝑡)} in equation (1); 

2)  currently known set points and control (command) signals; 

3)  real time measurements of a subset of disturbance components. 𝜔𝑖(𝑡). 

There are three viewpoints a designer may adopt regarding disturbances in control tasks. He may take the usual 

viewpoint that disturbances negatively influence system behavior. In that case, optimal disturbance suppression is 

achieved if the regulator is designed to eliminate the influence of any disturbances on the system [1-3]. 

Thus arise a special class of regulators called disturbance absorbing regulators. In some cases, the structure of the 

system does not allow full elimination of disturbance influence. Then the designer may instead seek to minimize 

disturbance effects, leading to disturbance minimizing regulators [4,11]. 

Finally, the designer may take an optimistic viewpoint that some disturbances can sometimes affect the system 

beneficially. In this case, optimal regulation is achieved by using all potentially useful disturbance effects — regulators 

that use disturbances. In some systems, requirements may lead to a combination of these three types, forming 

multifunctional disturbance adapting regulators [5,6,16]. 

METHODS 

To ensure maximum generality, we begin with a general mathematical model for a multidimensional (possibly 

time varying) linear system 

:𝑥̇ = 𝐾(𝑡)𝑥 + 𝐿(𝑡)𝑢(𝑡) + 𝐹(𝑡)𝑤(𝑡), 
𝑦 = 𝑀(𝑡)𝑥 + 𝑁(𝑡)𝑢(𝑡) + 𝐺(𝑡)𝑤(𝑡),     (1) 
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where  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) – is the state vector, 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛) – is the input vector, 𝜔 = ( 𝜔1,  𝜔2, … ,  𝜔𝑛) –

is the disturbance vector, and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) – is the output vector [17]. The matrices 𝐾(𝑡), 𝐿(𝑡), 𝐹(𝑡), 𝑀(𝑡),
𝑁(𝑡) и  𝐺(𝑡)   are assumed to known. Of course, in specific cases, some of these matrices may be constants (or perhaps 

even bullets). The inclusion of terms in expression (1) for the output variable is explained by the fact that designers 

often use accelerometers as output sensors [7,8]. 

Disturbances ω(t)=[ω1(t)..., ωp(t)], have wave like structure and can be modeled using the disturbance state 

model:  

𝜔(𝑡) = 𝑃(𝑡)𝑧 + 𝑄(𝑡)𝑥, 
𝑧̇ = 𝑅(𝑡)𝑧 + 𝑆(𝑡)𝑥 + 𝜎(𝑡),     (2) 

where 𝑧 = (𝑧1,  𝑧2, … , 𝑧𝑝)is the “disturbance state. Matrices 𝑃(𝑡), 𝑄(𝑡), 𝑅(𝑡),   𝑎𝑛𝑑  𝑆(𝑡)  in equation (2) are 

assumed known. The matrices   𝑄(𝑡) and 𝑆(𝑡)  in equation (2) are zero in most practical cases, but their inclusion in 

the general model (2) allows the designer to take into account the (rare) cases of the presence of (linearized) “state-

dependent disturbances” described in Section. The matrix 𝑃(𝑡) is most important since it captures the wave dynamics 

observed experimentally. 𝜔(𝑡) The matrix 𝑃(𝑡) shows how the various basis functions {𝑧1(𝑡),  𝑧2(𝑡), … , 𝑧𝑝(𝑡)}  

generated by equation (2) are linearly combined to form a system of real components of disturbances 

{𝜔1(𝑡),  𝜔2(𝑡), … , 𝜔𝑝(𝑡)}. Similarly the matrices , 𝐹(𝑡) and , 𝐺(𝑡)  in equations (1) show how each component of 

the disturbance 𝜔𝑖(𝑡) enters into the system dynamics equation. As established in Section 2, the disturbance model 

(2) can effectively describe virtually any disturbance of the wave structure 𝜔(𝑡) that may be encountered in the design 

of real control systems [9,10]. 

RESULT AND DISCUSSION 

If disturbances w(t) in (1) have wave structure described by (2), a state estimator can be built that provides real 

time estimates of the disturbance state z(t). Such an estimator uses measurements of y(t), u(t), and measurable 

components of w(t). A combined estimator can be constructed to estimate both x(t) and z(t): 

𝑢(𝑡) = 𝜑[𝑥̂(𝑡), 𝑧̂(𝑡), 𝑡],       (3) 

where  𝑥̂(𝑡),  𝑧̂(𝑡) denote the current estimates of х(t)., z(t obtained from a combined state builder that operates 

on the basis of data on y(t) from equation (2), the control and (t), and any measured disturbance components. Provided 

that the estimation errors 

𝜀𝑥 = 𝑥(𝑡) − 𝑥̂(𝑡)   и   𝜀𝑧 = 𝑧(𝑡) − 𝑧̂(𝑡)   quickly tend to zero compared to the settling time of the entire system, 

the physically implemented controller (3) is a good engineering approximation of the control law [12,16]. 

A simple form of a combined state builder. State builders can be designed in various forms. One of the simplest 

forms of a combined state builder for the system and disturbance model (2) is defined as follows [15,16]. Suppose that 

the number of components (subset) of disturbances 𝑤𝑖 , that can be directly measured is 𝑠,  and they are denoted by   

𝑤𝑚 = (𝑤𝑚1, … . ., 𝑤𝑚𝑠
); the subset 𝑤𝑚is expressed using the common disturbance vector  𝑤𝑚 = (𝑤1, … . ., 𝑤𝑝)  in 

the form  

𝑤𝑚 = 𝐽𝑤,                                                     (4) 

where J − (𝑠 × 𝑝) matrix of rank 𝑠. Note that if none of the components of the disturbances 𝑤𝑖  is measurable, then 

we simply need to set𝑠 = 0,    𝐽 = 0. Now we denote 

𝐺̃ =
𝐺

𝐽
                                                             (5) 

Then the combined disturbance plotter for equations (1) and (2) is defined as follows: 

 

(
𝑥 ̇

𝑧 ̂̇
) = [

𝐾+𝐹𝑄+𝐴11𝑀+[𝐴11|𝐴12]𝐺̃𝑄

𝑆+𝐴11𝑀+[𝐴21|𝐴22]𝐺̃𝑄
|

(𝐹+[𝐴11|𝐴12]𝐺̃)𝑃

𝑅+[𝐴21|𝐴22]𝐺̃𝑃
]  (

𝑥

𝑧 ̂
) − [

𝐴11

𝐴21
] 𝑦 − [

𝐴12

𝐴22
] 𝑤𝑚 + [

𝐿+𝐴11𝑁

𝐴21𝑁
] 𝑢,     (6) 

 

where K ,L, M, R, N, F, G, 𝐺̃, P, J, Q, S –the same matrices as in equations (1), (2), and (5). The symbols y, 𝑤𝑚 

and u  in equation (6) denote, respectively, the current measured values of the system output variable vector (1), the 

measured disturbance elements (4), and the control input variable (1). Matrices  𝐴11,   𝐴12,   𝐴21, 𝐴22 in equation (6) 

are selected by the designer based on stability considerations discussed below. Block diagram of the combined state 

builder described by equation (6) [13,15]. 

The quality of the estimates  𝑥̂(𝑡),  𝑧̂(𝑡) , performed by state builder (49), can be judged based on the analysis of 

the dynamic behavior of the combined state vector   (𝜀𝑥|𝜀𝑧) = [𝑥(𝑡)|𝑧(𝑡)] − [𝑥̂(𝑡)|𝑧̂(𝑡)].  From equations (42) and 

(43) it follows directly that(𝜀𝑥|𝜀𝑧) are described by a system of (𝑛 + 𝑝) first-order differential equations: 
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(
𝜀𝑥 ̇

𝜀𝑧̇
) = [

𝐾+𝐹𝑄+𝐴11𝑀+[𝐴11|𝐴12]𝐺̃𝑄

𝑆+𝐴11𝑀+[𝐴21|𝐴]𝐺̃𝑄
|

(𝐹+[𝐴11|𝐴12]𝐺̃)𝑃

𝑅+[𝐴21|𝐴22]𝐺̃𝑃
] (

𝜀𝑥

𝜀𝑧
) + (

0

𝜎(𝑡)
).                            (7)  

 

CONCLUSIONS 

Complete absorption of disturbances. To completely eliminate the influence of disturbances 𝑤(𝑡) on the behavior 

of system (1), control u must counteract the influence of the terms  𝐹(𝑡)𝑤(𝑡) and 𝐺(𝑡)𝑤(𝑡) and simultaneously control 

the state  𝑥(𝑡) [and/or y(𝑡)]  in the desired manner. To achieve this, we assume that the overall control action u is split 

into two parts: 

 𝑢 = 𝑢𝑑 + 𝑢𝑝.        (8) 

The component 𝑢𝑑  is assigned the task of absorbing disturbances 𝑤(𝑡), and the component  𝑢𝑑 −is assigned the 

task of the required control of the state 𝑥(𝑡) and/or variable  𝑦(𝑡) (thus, 𝑤(𝑡) performs the main control task). Then, 

substituting expression (8) into equation (1), we obtain [below, the argument t in the matrices is sometimes omitted 

for the sake of simplicity of notation]; 

𝑥̇ = 𝐾𝑥 + 𝐿𝑢𝑝 + 𝐿𝑢𝑑 + 𝐹𝑤(𝑡), 

𝑦 = 𝑀𝑥 + 𝑁𝑢𝑝 + 𝑁𝑢𝑑 + 𝐺𝑤(𝑡),     (9) 

From equations (9) it follows that for complete absorption of disturbances the value of 𝑢𝑑 must be chosen so that 

the equations are satisfied 

𝐿𝑢𝑑(𝑡) ≡ −𝐹𝑤(𝑡),  𝐿𝑢𝑑(𝑡) ≡ −𝐺𝑤(𝑡),     (10) 

for all possible disturbance vectors 𝑤(𝑡). The range of possible values  𝑤(𝑡)  is given by equation (2) where 𝑧 − 

arbitarary  𝑝 −vector, and 𝑥 − arbitarary  𝑛 − vector. Thus, using equation (2), we can express the projection 

conditions (60) in the form 

[ 
𝐿 

𝑁
 ] 𝑢𝑑(𝑡) ≡ − [ 

𝐹𝑃 | 𝐹𝑄

𝐺𝑃 | 𝐺𝑄
 ],     (11) 

where (𝑧/𝑥) arbitrary. A necessary and sufficient condition for the existence of a control  𝑢𝑑. Satisfying equation 

(11) has the form 

𝑟𝑎𝑛𝑘 [ 
𝐿 | 𝐹𝑃 |𝐹𝑄 

𝑁 | 𝐺𝑃 |𝐺𝑄
  ] = 𝑟𝑎𝑛𝑘 [ 

𝐿

𝑁
 ],     (12) 

Further, satisfaction of the criterion of complete absorption (12) means that 

[ 
𝐹𝑃 | 𝐹𝑄 

𝐺𝑃 | 𝐺𝑄
  ] = [ 

𝐿

𝐹
 ]

[G]

,         

for some matrix G. The most general form of the “solution” of equation (11) with respect to the control 𝑢𝑑 of the 

absorbing disturbance is given in the work [11]: 

𝑢𝑑 = −𝐺 (
𝑧

𝑥
) = −𝐺1𝑧 − 𝐺2𝑥,             𝐺 = [𝐺1| 𝐺2],    (13) 

where any matrix from the family can be chosen as 𝐺 

𝐺 = [ 
𝐿

𝑁
 ]

+

[ 
𝐹

𝐺
 ]

[ 𝑃 | 𝑄 ]

+ ( 𝐼 − [ 
𝐿

𝑁
 ]

+

  [ 
𝐿

𝑁
 ]) 𝑄𝐺 .   (14) 

Here  𝑄G – completely arbitrary matrix of (real) parameters. The symbol [ ∙ ]+ in equation (14) denotes the well-

known generalized Moore–Penrose inversion of the matrix  [ ∙ ]  usually, the designer chooses the coefficient matrix 

G such that || 𝐺 || is minimal in some sense. Choosing 𝑄𝐺 = 0 in equation (14) leads to a particular solution 𝐺 = 𝐺∗, 

in which each column of the matrix G∗ has the minimum possible norm. Note that if  

𝑟𝑎𝑛𝑘 [ 
𝐿

𝑁
 ] ≡ 𝑟, 

then (the bar indicates transposition) 

[ 
𝐿

𝑁
 ]

+

= ( [ 
𝐿

𝑁
 ]

′

[ 
𝐿

𝑁
 ])

−1

 [ 
𝐿

𝑁
 ]

′

, 

and equation (14) automatically gives the unique solution G = G∗. 

The calculation of [ ∙ ]+ for other cases is described by Kalman and Englar [16]. 

Thus, the main criterion for achieving complete absorption of disturbances  𝑤(𝑡)  in model (2) is expressed by 

equation (12). Equations (13) and (14) define “regulators adapting to disturbances”, which ensures complete 

absorption of disturbances; in practice, equation (13) can be implemented in the form 
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𝑢𝑑 = −𝐺1𝑧̂ − 𝐺2𝑥̂,             𝐺 = [𝐺1|𝐺2],    (15) 

where   𝑧̂, 𝑥̂   are generated by the combined state builder. 
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