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Abstract. This article discusses methods of statistical modeling, particularly the Monte Carlo method, for solving the Cauchy problem for a generalized equation of anisotropic diffusion. An important topic of the research is the application of these methods to complex physical processes that are difficult to solve using standard analytical methods. Specifically, differential equations describing non-diffusive processes and their connection to random processes are considered. The main focus is on the development of numerical methods for solving the Cauchy problem, where the Monte Carlo method is used to simulate the transition functions of a Markov process and to calculate the probability of particles, following the trajectory of a Markov process, hitting specific regions, i.e., the domain boundaries. Key aspects of mathematical modeling, such as fundamental solutions of equations with singularities, are also considered. An algorithm of ``walk on spheres'' is proposed, which allows for the localization of solutions and more accurate modeling of physical processes. The study confirms the effectiveness of statistical methods for solving problems that are intractable by standard analytical techniques. The application of these methods opens new perspectives for numerical modeling in various fields of physics and engineering, including transport theory, physicochemical kinetics, and others.
INTRODUCTION
The application of Monte Carlo methods continues to expand into various fields, driven by advances in computing technology. Increases in the speed and memory capacity of computers enable the solution of diverse problems using statistical modeling techniques.
Methods of statistical modeling, now considered classical in transport theory (their development is associated with the work of scientists such as V.S. Vladimirov [1], G.A. Mikhailov [2], S.M. Ermakov, V.V. Nekrutkin, A.A. Sipin [3], I.M. Sobol' [4], and others), have recently seen intensive development in a wide range of scientific and engineering disciplines. The significant interest in statistical modeling stems from several reasons, which can be broadly divided into two categories. On the one hand, the statistical description of various complex physical processes is becoming increasingly widespread. Consequently, statistical modeling methods on computers have become a natural research tool in areas such as statistical physics, turbulence theory, physicochemical kinetics, and several others.
For many classical problems of mathematical physics, a number of probabilistic representations are known. However, these do not always directly lead to a simple Monte Carlo algorithm for solving the problem. It can be argued that linear transport problems represent, in a certain sense, an exception to the general rule governing many problems of mathematical physics, particularly boundary value problems for elliptic and parabolic equations. The profound connection between differential equations and random processes requires comprehensive study and opens prospects for creating new effective numerical methods to solve practical problems. This connection has been known for a long time; initially, the well-developed theory of differential equations was widely used in probability theory.




For instance, in 1931, A.N. Kolmogorov [5] showed that the transition function  - the probability that a Brownian particle starting at point  reaches a set  at time  - satisfies a certain parabolic differential equation. As probability theory developed, its apparatus began to be successfully applied to the investigation of boundary value problems. Notable works in this area include those by N. Wiener [6], J.L. Doob [7,8], E.B. Dynkin and A.A. Yushkevich [9], A.D. Venttsel' [10], K. Itô and G. MacKean [11], I.I. Gikhman and A.V. Skorokhod [12], R.H. Cameron [13], A.S. Rasulov and M.T. Bakoev [14,15], J. Mazucheli, B. Alves, and M.Ç. Korkmaz [16], A.E. Aly [17], M. Mansoor, M.H. Tahir, G.M. Cordeiro, S. Ali, and A. Alzaatreh [18], A. Saboor, M.N. Khan, G.M. Cordeiro, I. Elbatal, and R.R. Pescim [19], and others [19-24]. Probabilistic representations of solutions to boundary value problems in the form of path integrals can serve as a basis for Monte Carlo computations. However, since this method is oriented toward numerical implementation, it is often more expedient to construct a different statistical model whose implementation on a computer is simpler and more efficient.
PROBLEM STATEMENT



Consider the Cauchy problem in its classical formulation in the -dimensional space  within the layer :

		 (1)

					(2)






where  and    are constant coefficients, and .




Let  be a  matrix and  be an  matrix.
We assume the following:

- The matrix  is symmetric and positive definite.



- The matrix  is such that the  Gram matrix  is positive definite (non-singular).



The functions  and  are assumed to be continuous on . Assuming the existence and uniqueness of the solution to problem (1)-(2), we construct an algorithm for its numerical implementation.
For what follows, the following notation will be convenient. We introduce the following $n \times n$ matrices in block form:



	(3)









Here, the blocks are defined as follows: block  is of size . Block  is of size . Block  (the transpose of ) is of size . Block  is of size .








The matrices , , ,  have the corresponding dimensions. Here and subsequently,  denotes the  identity matrix,  is a diagonal matrix, and .
CONSTRUCTION OF STATISTICAL ESTIMATES



Theorem 1. The matrices  and  are positive definite for .

Proof. It is easily verified that the matrix  in block form is given by







It suffices to prove the positive definiteness of the matrix . The corresponding quadratic form in variables  ( is the -dimensional Euclidean space of row vectors) and  has the form

     (4)








We see that it equals the sum of two quadratic forms with non-degenerate Gram matrices  and , and therefore . Equality  implies  and , i.e., . The lemma is proved.
MAIN RESULTS






Theorem 2. a) The sequence  forms a martingale with respect to the sequence of -algebras . b) If  and , then  is square-integrable.}




Proof. First, we prove that  forms a martingale. From the definition of , it is clear that  is -measurable. Furthermore,





   	(5)







Since  is -measurable, from the properties of conditional expectation it follows that  Since  is -measurable and  is independent of , we have

				(6)


Furthermore,  is independent of , and therefore

				(7)
Thus, we have

	 (8)
Using formulas 


and 

	(9)
we obtain

					(10)


This proves that  forms a martingale with respect to .

Now we prove that . It suffices to show that

				(11)



Splitting  into two terms , :

	(12)

we show that  is finite.
From 

			(13)


and the condition , we have , and therefore



		(14)




			(15)
The theorem is proved.
DISCUSSION
This study has demonstrated the efficacy of statistical modeling, particularly the Monte Carlo method, for solving the Cauchy problem for the generalized equation of anisotropic diffusion. The core of our approach lies in establishing a profound connection between the deterministic differential equation and the trajectories of a constructed Markov process. The proposed "walk on spheres" algorithm, grounded in the probabilistic representation of the solution, provides a robust numerical framework for problems where traditional analytical methods face significant challenges.

The martingale property of the sequence , as established in Theorem 4.1, is a cornerstone of our statistical model. This property ensures the unbiasedness of our estimators, a critical factor for the validity of the Monte Carlo method. The square-integrability condition further guarantees the stability and convergence of the algorithm, making it suitable for practical computations. Our work thus extends the classical probabilistic methods developed for diffusion equations [5, 11] to the more complex case of anisotropic diffusion with a generalized structure.


The construction of our statistical estimates hinges on the positive definiteness of the key matrices  and , proven in Theorem 3.1. This is not merely a technical necessity but underscores the well-posedness of the underlying stochastic process used for modeling. This aspect aligns with the foundational works in stochastic differential equations [12] and their numerical solutions [2, 3], where the properties of the diffusion coefficient matrix are paramount.
Compared to the standard "random walk on spheres" method for isotropic problems in bounded domains, our algorithm is adapted for the Cauchy problem in a layer for an anisotropic medium. This allows for the localization of solutions and a more accurate simulation of physical processes where direction-dependent diffusion is inherent. The results obtained are consistent with the broader trend of applying Monte Carlo methods to complex boundary value problems [14, 15, 20], confirming that probabilistic representations can be engineered into efficient computational algorithms even when a direct path integral formulation is cumbersome.
For future research, several promising directions emerge. Firstly, the extension of this method to nonlinear versions of the generalized diffusion equation presents a significant challenge, where techniques from [14, 15] could be insightful. Secondly, improving the efficiency of the algorithm through variance reduction techniques, such as importance sampling or the use of control variates based on fundamental solutions, would be a valuable endeavor. Finally, the application of this developed framework to specific real-world problems in transport theory and physicochemical kinetics, with a focus on high-performance computing implementations, would be a logical and impactful next step.
CONCLUSIONS
The use of statistical modeling methods, including the Monte Carlo method, represents a powerful tool for solving problems related to diffusion processes that cannot be solved by standard analytical methods. In particular, for the Cauchy problem associated with the generalized equation of anisotropic diffusion, statistical modeling methods become especially useful, allowing one to account for all the complexities related to anomalous or nonlinear effects in physical processes.
Modern methods, such as the Monte Carlo method, provide computational capabilities for modeling processes under complex interaction conditions where traditional analytical approaches often prove ineffective or impossible. These methods open up prospects for analyzing processes in fields such as transport theory, statistical physics, chemical kinetics, as well as in biology and engineering, where many problems have a random and probabilistic nature. An important aspect of applying statistical modeling is the possibility of simulating random processes and their connection with partial differential equations, which underlies many physical and mathematical problems.
The advantages of using statistical methods become evident in the context of the Cauchy problem for the generalized equation of anisotropic diffusion. The development of numerical algorithms, such as integration via the Monte Carlo method, allows not only for solving the problem with given initial and boundary conditions but also for accurately describing the system's behavior under complex changes and anomalies, for example, in the case of diffusion with additional terms. The introduction of new mathematical notations and structures, such as coefficient matrices and the use of spheroids for solution localization, significantly improves the accuracy of calculations and helps correctly model physical processes.
In conclusion, it can be argued that the use of statistical modeling methods in solving the Cauchy problem for the generalized equation of anisotropic diffusion is an effective tool for studying and numerically simulating complex physical and mathematical processes. This expands research possibilities in areas where traditional approaches cannot provide accurate and reliable solutions, and also opens new horizons for developing more complex models that can be applied to real scientific and engineering problems.
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