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Abstract. The aim of this study is to mathematically model the process of water harvesting using atmospheric water vapour
and to evaluate the efficiency of air water generator (AWG) systems based on heat and mass transfer equations. The model
analyses air flow, moisture distribution and condensation processes using computational fluid dynamics (CFD) together
with the Magnus-Teten, Clausius-Clapeyron and adsorption equations. The results showed that air temperature, relative
humidity, and condenser temperature strongly influence water collection capacity. CFD simulations made it possible to
determine condensation zones and establish optimal operating parameters for AWG unit.

INTRODUCTION

Water is considered the most abundant resource on Earth. It covers more than 70% of the planet's surface.
However, we humans, as a species, are facing a dire crisis. Climate change, global conflicts and population growth
are seriously damaging water supplies in many regions of the world. A quarter of the world's population needs clean
drinking water. As the world's population approaches eight billion, all attention is focused on developing technologies
that will help solve this problem before it is too late. Water scarcity is not a new phenomenon, but many countries,
especially in the southern hemisphere, are experiencing severe droughts and floods as a result of climate change, which
is leading to the contamination of water sources [1-3].

According to the Food and Agriculture Organisation of the United Nations, more than 50% of the world's
population — four billion people — experience water shortages at least once a month, and by 2025, 1.8 billion people
are expected to live in completely arid countries or regions [4, 5].

According to the World Health Organisation (WHO), more than 2 billion people worldwide live with water mixed
with sewage. A single sip of water can infect them with diseases such as cholera and typhoid fever, resulting in
approximately 500,000 deaths each year. Energy efficiency is a way to obtain clean water without the need for
traditional water infrastructure, making it an attractive option in remote areas [6-8].

According to a report by Global Market Insights, the atmospheric water production market, estimated at $3.4
billion in 2022, is expected to reach $13.5 billion by 2032. There are two main methods of obtaining atmospheric
water. The first is condensation cooling, in which humid air is converted into water droplets. The second is a system
in which hygroscopic materials absorb moisture from the air, and the absorbed moisture is converted into water by
heating [9-11].

MATERIALS AND METHODS

An air water generator (AWG) is a system that collects water vapour from the air through condensation or
adsorption/absorption and converts it into drinking water. The efficiency of this technology depends on the amount of
moisture in the atmosphere and the air temperature. For example, in areas with an air temperature of 30-40 °C and relative
humidity of 40-80 %, these devices work very efficiently [12].
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Water vapour is present in the air, and to convert it into a liquid state, the vapour must be cooled below the dew
point [13-16].

The main stages of the process of obtaining water from air:

* air intake — the device draws in air using a fan;

* cooling (condensation) — the air is cooled to 10-15 °C using a cooler or Peltier element;

« vapour condensation — water vapour in the air is converted into liquid water;

« filtration and mineralisation — water passes through a filter and mineral additives to improve its drinking quality.

Calculation model (analytical analysis). If the air temperature T, and relative humidity ¢ are known, the amount
of water in the air is determined as follows [17-24]:

17.62:Tq
6.112.8243A12+Ta.2l1674
po =@ 273.154T, M
here p,, is water vapor density in the air (g/m>).
When the condenser temperature is T, the maximum water density when the air is cooled to:
Posat (T @)
Amount of condensate (i.e., water to be collected):
Meona = Py — Po,sat (Tc) (3)

Sample calculation: T, =35°C; ¢ =04; T.=12°C; p,~151gm* p,(T) = 10.7 g/m’
Condensat ~ 4.4 1 g/m’.
This means that 4.4 grams of water can be extracted from each cubic meter of air.

TABLE 1. Factors affecting efficiency

Factor Effect Note

Air temperature | When T+, humidity increases. | At 40 °C, the amount of water is 2-3 times higher.

ﬁ;l;litgi/tey Efficiency is high at 50-80%. | It is very difficult to obtain water in dry weather (<30%)
Condenser The lower it is, the more water .
. However, energy consumption increases
temperature there is.
Air flow rate A balance is needed. At a very low speed, there will be insufficient air, and

condensation will not take place very quickly.
A large area means a large | If the capacitor area is 10 m?, the efficiency is much
body of water. higher.

Unit surface

Types of water intake [21].

1. Condensation (based on cooling):

* cooling the air using a compressor and condenser;

« internal temperature ~10-15 °C;

« effective, but energy-intensive (0.3-0.5 kWh/liter).

2. Adsorption (silica gel/zeolite):

* absorbs moisture at night and collects water during the day, releasing it under the influence of solar heat;
* no electricity required, but quiet.

3. Hybrid systems:

« condensation + acceleration of vapour droplets using ultrasound or vibration;
CFD models are used to optimise such systems.

TABLE 2. CFD (Computational Fluid Dynamics) Parameters used in modeling

Parameters Designation Range Note
Air temperature Toir 30-45 °C Incoming air
Relative humidity ¢ 30-80% Atmospheric conditions
Air velocity v 1-5 m/c Fan flow rate
Capacitor temperature T. 10-15 °C Cooling panel
Condensation of velocity m r/mM?-¢c CFD results
Moisture diffusion D 2.6x107° m?/c Mass transfer coefficient
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TABLE 3. Energy efficiency

Equipment type Energy consumption (kWh/liter) Note
Condensation (compressor) 0.3-0.6 Requires electricity
Elemental coat 0.6-1.0 For small unit
Solar hybrid (sun + adsorption) 0.05-0.2 Effective on sunny days
Ultrasound system 0.1-0.3 Innovative type

TABLE 4. Dependence of unit efficiency on weather conditions

Temperature (°C) Relative moisture (%) Water intake from 1 m® of air (g)
20 40 5-6
25 60 15-20
30 80 25-35

For example, at an ambient temperature of 30 °C and relative humidity of 80%, a 1-tonne atmospheric water
harvesting unit can produce approximately 200-300 liters of condensed water per day.

CFD (computational fluid dynamics) modelling was performed to visualise the physical behaviour of air flow and
moisture condensation processes.

Ambient air temperature range considered:

* 20-30 °C (typical operating conditions);

* 30-45 °C (arid and desert climatic conditions).

Relative humidity levels investigated:

* 40%, 60% and 80%;

* higher relative humidity directly increases condensation efficiency.

Air flow velocities analysed (m/s):

* 0.5 m/s (low flow);

* 1-2 m/s (moderate flow conditions);

* 3-5 m/s (typical for high-power systems);

Condenser surface temperature:

* maintained in the range of 10-15 °C.

Modelling results include:

« air flow direction represented by vector fields;

« temperature gradients illustrating heat transfer distribution;

» moisture condensation areas defined by isosurfaces or droplet formation zones.

RESULTS AND DISCUSSION

If the air temperature range is: 30-45 °C (desert/dry conditions), relative humidity (%): 40% (high humidity - high
condensation efficiency), air velocity (m/s): 1-2 m/s (average speed), cooling surface temperature (condenser): 10-15 °C.
Absolute humidity (g/m?) was calculated using the Magnus-Tetens formula. Steam in excess of saturation for the
capacitor surface was taken as "condensate," i.e. [25]:
Condensate (g/m3) =max (0, py,intet — Pv,sat Tcona)) 4)
Calculations were performed for the conditions T;;,, = 30 — 45 °C (integer), RH=40%, T,,nq = 10,12,15 °C.
Transition to airflow for integration:
m3/day = velocity (m/s) X intake_area (m?) x 86400 s/day.
In this research work, two typical intake_areas were adopted: small = 0.1 m?> (mobile), large = 1.0 m?
(kilovatt or industrial module).
When the condensate (g/m?):
Tin(RH = 40%) )
« at 10 °C, from each m? of air in the range of 3045 °C, =2.7—16.7 g/m’ can be obtained (varies depending on
whether it is 30 °C or 45 °C);
» when the condenser is at 12 °C and 15 °C, the quantity decreases respectively (in cases where T, is lower,
efficiency is observed to be higher).
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Figure 1 shows a decrease in the temperature gradient in the air flow from 45 °C to 30 °C. It was found that as the
air approaches the condenser surface, the temperature drops rapidly and the condensation process is activated. The
increase in the gradient reflects intense heat exchange and the beginning of water droplet formation.

Estimated L/day (area=0.1 m?, condenser 12°C, RH=40%)

1.0 2.0 3.0 5.0
Velocity (m/fs)

FIGURE 1. Temperature gradient (heat distribution)

Liter/day examples (area=0.1 m? and 1.0 m?):

In this case, under conditions of area=0.1 m?, v = 1 m/s, Ty, = 35 °C, Tgona = 12 °C;

We obtain:

m3/day ~ 1.0 x 0.1 X 86400 ~ 8640 m’/day.

« condensate = 7.78 g/m?® (T, = 35, RH 40%, Toong = 12 °C).

Including:

L/day = 7.78 x 8640/1000 ~ 67.2 L/day.

With a large size (area=1.0 m?) and v=3-5 m/s, it is possible to obtain examples from several hundred liters/day to
several thousand liters/day (the graph is given in the form of a "heatmap") [26].

Figure 2 illustrates the spatial variation of temperature as air moves within the range of 30-45 °C. As the air
approaches the condenser, the heat flow decreases and the cold zone expands. This indicates a reduction in
turbulence and an increase in condensation efficiency. The directed airflow ensures energy -efficient operation
of the AWG system.

CFD simulation: Airflow and temperature distribution
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FIGURE 2. Airflow and temperature distribution (decrease from 45 °C to 30 °C)

Figure 3 shows a local increase in air humidity to values above 40%. This is due to the vapour approaching
saturation in the condenser area and an increased likelihood of droplet formation. The humidity gradient precisely
determines the intensification of mass transfer and the optimal zone for water accumulation.
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CFD simulation: Airflow and temperature distribution
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FIGURE 3. Moisture distribution (increases above 40%, i.e., increases the probability of condensation)

Figure 4 shows a three-dimensional model of multidimensional temperature dynamics during air movement. Hot
air has a high value at the inlet and cools rapidly in the condenser zone. The spatially uniform temperature drop

confirms the correctness of the AWG device geometry and the conformity of the heat transfer model to real conditions.
Air temperature (°C)

0.0 0.6

0.2

0.4
Surface distance

0.4 0.2

Airflow direction 0.8 10 0O

FIGURE 4. CFD simulation results in 3D format: changes in air temperature (between 30-45°C)

Figure 5 shows the distribution of moisture in the air flow in volumetric format. A sharp decrease in moisture
concentration near the condenser indicates the activity of the process of converting vapour into droplets. The movement
of moisture from the upper points to the lower zone indicates stable operation of the mass transfer mechanism.
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FIGURE 5. CFD simulation results in 3D format: moisture distribution (%)
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The overall results show that the relationship between the temperature gradient, moisture distribution, and air flow
determines the water consumption efficiency of the AWG system. CFD analysis made it possible to identify
condensation zones and select the optimal cooling temperature and air flow velocity. The developed model provides
a solid foundation for the energy-efficient design of the AWG unit [27-29].

CONCLUSIONS

The technology of extracting water from the air has become an effective tool in combating the global problem of
water scarcity. The use of this technology, with its increased energy efficiency, operational reliability and convenience,
is highly relevant. Thanks to the creation of new materials and designs that take into account the impact on the
environment, as well as the implementation of measures to support this technology, the technology of obtaining water
from the air can become a reliable source of water for millions of people living in regions of the world experiencing
water shortages.
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