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Abstract. The parameters of the equivalent substitution circuit of the AIML71V4UZ type short-circuited rotor
asynchronous machine, obtained from experimental tests, were investigated: measurement of the active resistance of the
stator winding at constant current, no-load, and short-circuit. Based on these parameters, the calculation and construction
of the mechanical characteristic of the electromagnetic torque covering both the motor and the generator modes were
performed. The critical values of slip and torque were determined, and a significant difference in the absolute value of the
critical torque in the generator mode compared to the motor mode was revealed. Conclusions were made about the range
of stable operation and the specifics of using the machine as an asynchronous generator.

INTRODUCTION

Asynchronous (induction) machines are widely used in both motor and generator modes. To analyze their
characteristics, replacement circuits are used, the parameters of which are determined by tests and serve as the basis
for calculating the moment, current, power, and stability of operation. When switching to generator mode, the slippage
becomes negative, and the machine gives power to the network when the rotor is driven by an external motor. Such a
feature is described by classical sources: with negative slip, the machine works as a generator and delivers electrical
energy to the network, and there is a maximum possible torque in the generator mode [1, 2].

The purpose of the work is to experimentally determine the parameters of the equivalent circuit of a specific
machine and analyze its mechanical characteristic in a wide range of slippage, including the generator mode, with an
assessment of critical moments and stable load conditions [3,4].

EXPERIMENTAL RESEARCH

For theoretical research, a series-produced short-circuited rotor type AIML71V4UZ asynchronous motor with the
following nominal values was selected:

- power of 0.75 kW

- voltage 380/220 V

- current of 2.05/3.56 A

- rotation frequency 1395 min -1

- efficiency coefficient 74%

- cosp = 0.75.

For theoretical research, the parameters of the substitution circuit of the AIML71V4UZ asynchronous machine
were determined using known methods. The active resistance of the stator winding was determined using an ammeter
and a voltmeter when powered by direct current. Measurements of phase resistance were carried out at three different
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voltage values at ambient temperature of 20°C. The average value of the active resistance of the three phases was 8.59
Ohms. The measured phase resistance was brought to a temperature of 75°C using the formula:
Rys = Rep - [1+ 0,004 - (75 — 20)] (1)
where 0.004 1/C is the temperature coefficient of resistance for copper.

The magnetization circuit parameters of the substitution circuit were determined based on the results of the
asynchronous motor's no-load experiment, which was conducted at a nominal phase voltage of Upn=220V. The active
power consumed and the phase current were measured. The following average values of the phase input resistances
were obtained [5, 6].

Zy = % = 157,1 Ohm - full input impedance of the phase,
Ry = % = 26 Ohm - active phase resistance,

Xo =+/157,12 — 262 = 154,9 Ohm - inductive phase resistance.

A short circuit experiment was conducted at a reduced voltage supplied to the stator of the AIML71V4UZ
asynchronous motor. The phase voltage Upy, the phase current Ik, and the power consumed from the entire machine
network Py were measured. Based on experimental data, the input phase resistances in the short-circuit mode were
determined:

Zw=27.22 Ohms, Ri=19.28 Ohms, X»=19.21 Ohms, X;=X"',=19.21/2=9.61 Ohms,

R'2=Rpk - R75=19.28 - 10.48 = 8.8 Ohms.

When transitioning from the "T" - simulated circuit to the "G" - simulated circuit, the modulus of the rotor winding
resistance reduction factor is determined by the formula:
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The "G"-shaped diagram of one phase of the asynchronous machine is presented in Figure 1.
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Figure 1. Replacement diagram of an asynchronous machine after combining the above-mentioned resistances

a) Ci'Ri=1,06-10,48=11,1 Ohms

b) C%-R;=1,06*8,8=9,89 Ohms,

¢) (Ri+Rwm) =R¢=26 Ohms,

d)  (Xi+Xwm) =Xo=154,9 Ohms,

e) C%-Xx=1,06*19,21=21,58 Ohms,

The substitution scheme shown in Figure 1 and its designated parameters Ro, Xo, Ri, R2, X1, X'» are adopted for
calculating and analyzing the mechanical characteristics of the asynchronous generator, which are constant,
independent of the rotor's slippage [7, 8].

MECHANICAL CHARACTERISTIC OF AN ASYNCHRONOUS MACHINE

It is known that the dependence of the electromagnetic moment Mem is determined by the formula applicable to

the substitution circuit shown in Figure 1:
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where m=3 is the number of phases of the asynchronous machine;

p=2 - number of pole pairs for the AIML71V4UZ asynchronous machine;
Up=220 V - nominal phase voltage;
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R, = 8.80 Ohm - active resistance of the rotor winding;

o= 2nf=2-3,14-50=3,14 - angular frequency at the network frequency f=50 Hz;

R=10.48 Ohm - active resistance of the stator winding;

Xx=19.21 Ohm - inductive resistance of the rotor winding;

Ci = 1.06 is the modulus of the coefficient for bringing the stator parameters to the rotor circuit of the G-shaped
replacement circuit.

Based on the dependence (2.3), the calculation of the electromagnetic torque of the asynchronous machine was
performed at a constant phase voltage of U,=220 V and constant parameters of the substitution circuit.

For comparison, the nominal data were calculated.

The slip in the nominal mode of the asynchronous motor is determined
S, =22 = 0,07 (4)
ni
The rotor torque in nominal mode is determined by
M, = 9550°Py _ 9550075 _ ¢ 1g )
nn 1395
Based on the calculated data, a graph of the mechanical characteristics of the asynchronous machine, presented in

Figure 2, was constructed.
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Figure 2 - Calculated mechanical characteristic of the asynchronous AIML71V4UZ machines

The engine mode corresponds to a change in slip from zero to one, and the generator mode corresponds to a change
from zero to minus infinity. However, for practical use, the generator characteristics are of interest only within the
range of the slip change from zero to minus one, which is reflected in Figure 2 [9, 10].

RESEARCH RESULTS

The mechanical characteristic has critical moment values both in the engine mode +M., and in the generator mode
-M.:. Therefore, the load on the asynchronous machine can be within +M..

The critical values of the slip S¢; and the moment M, are determined by formulas (6, 7) and have the following
values for the ASIML71V4UZ asynchronous machine:
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In the given formulas, the "plus" sign refers to the determination of a quantity for the engine mode, and the "minus"
sign for the generator mode. It should be noted that the critical values of the moment differ in absolute value: for the
motor Mer.mot = +12.66 N-m, for the generator Mc;.gen = -34.40 N-m.
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The operation of an asynchronous machine within = M, has a stable nature of operation. The values of =M.,
determine the stability limits. The nominal torque value of an asynchronous machine is selected approximately twice
less than the critical value M., to ensure the machine's overloading capacity.

Calculations showed that the critical value of the torque in the generator mode is 2.68 times greater than the critical
value in the motor mode in absolute value. The ratio of critical moments can be expressed by the formula [11, 12]:
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This ratio depends on the parameters of the substitution circuit R; and Xy, but does not depend on the active
resistance of the rotor R». Consequently, when an additional resistance is introduced into the rotor circuit, the ratio (3)
does not change its value [13, 14, 15].

CONCLUSIONS

1. The critical value of the asynchronous machine's torque in generator mode is several times greater than the
corresponding critical value of the torque in motor mode. Consequently, when selecting an asynchronous motor by
nominal torque to switch it to generator mode, its overloading capacity in generator mode can always be considered
quite sufficient.

2. The multiplicity of the increase in the critical moment of the asynchronous machine in generator mode depends
on the parameters of the substitution circuit R; and Xy and does not depend on the resistance of the rotor R,.
Consequently, when an active resistance is introduced into the rotor circuit, the multiplicity of the critical values does
not change.

3. As can be seen from the mechanical characteristics, this critical moment ratio is also maintained for the nominal
moments of the asynchronous machine in the generator and motor modes, thereby ensuring stable operation in the
generator mode with a load exceeding the nominal power values of the motor mode.
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