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Abstract. Ensuring precise, stable and energy-efficient control of temperature-dependent complex industrial processes has 

become a critical challenge for modern automation. Industrial furnaces fueled by gas, characterized by high thermal mass, 

complex heat flow patterns within the combustion region, fluctuating temperatures, unpredictable external factors, and 

intricate chemical reactions with significant nonlinearity, push the boundaries of conventional control strategies like PID, 

fuzzy-PID, and model-predictive control (MPC). In neutralization systems, the presence of highly sensitive regions in the 

step response, the temperature dependence of reaction rates and gradual parameter drift over time further reduce the 

robustness and efficiency of these classical approaches. In this context, the paper introduces a cognitive computing-based 

optimal-adaptive control and energy optimization model specifically designed to address these drawbacks. The proposed 

architecture combines: (i) a cognitive perception module that represents and interprets process states at a semantic and 

conceptual level; (ii) neural identification blocks that serve as universal approximators to reconstruct nonlinear, 

temperature-dependent dynamics in real time; (iii) a Bayesian adaptation mechanism that tracks slow parameter variations; 

and (iv) an energy-centered optimization core that formulates and solves a multi-objective trade-off between control 

smoothness, tracking accuracy and energy usage. Simulation and application results show that, for gas-fired furnaces, 

dynamic changes in thermal load are compensated more accurately, temperature profiles become smoother, and fuel and 

energy consumption decrease due to mitigated inertial effects in the combustion process. For neutralization processes, 

excessive control action oscillations in highly sensitive regions are suppressed, reagent consumption and output variability 

are reduced, and robustness to model uncertainties and external disturbances is improved. Owing to its high adaptability, 

the proposed model can be generalized to a wide range of temperature-driven industrial processes, which underscores its 

practical relevance and scientific significance. 

INTRODUCTION 

Accurate, stable, and energy-efficient control of temperature-sensitive complex industrial processes is one of the 

most challenging and strategically important directions in modern industrial automation. In particular, the thermal–

energy regimes of industrial gas-fired furnaces and the strongly nonlinear chemical transitions observed in 

neutralization processes are characterized by time-varying dynamics, gradual parameter degradation, pronounced 

thermal inertia, stochastic external disturbances, and high sensitivity of control signals. Under such conditions, 

maintaining process stability, minimizing energy consumption, and ensuring high-quality performance often require 

control methodologies that go well beyond the capabilities of conventional PID, fuzzy-PID, or even model-based MPC 

algorithms. The rapid digitalization of industrial systems, the evolution of the Industry 4.0 paradigm, the spread of 

smart manufacturing and cyber-physical systems, and the growing emphasis on energy efficiency and digital twins 

further intensify the need to rethink traditional solutions and to develop new scientific paradigms for process control. 

A review of the literature shows that classical strategies for thermal process control – PID, PI-D, cascade control 

structures and their various modifications –cannot provide sufficient stability and fast adaptability in systems whose 

parameters change significantly over time [1]. Model-based approaches, especially MPC, are theoretically powerful 

tools for the control of complex processes; however, in practice they face serious limitations due to the requirement 

for highly accurate mathematical models, substantial computational burden, and limited robustness to unmeasured 
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disturbances and model mismatch [2-3]. Studies on gas-fired furnaces demonstrate that thermal inertia, nonlinear 

convective–radiative heat transfer, and high parameter sensitivity in the combustion process significantly restrict the 

effective operating range and performance of both PID and MPC-based controllers [4]. For neutralization processes, 

the S-shaped, strongly nonlinear step response, extreme sensitivity in transition regions, and the fact that small control 

fluctuations near the equivalence point can cause large chemical deviations have been shown to drive conventional 

control schemes toward instability or oscillatory behavior [5-6]. 

In recent years, control strategies based on cognitive computing concepts have been actively developed as 

integrated architectures capable of combining contextual analysis of complex systems, self-adaptation mechanisms, 

neural identification, and knowledge-driven decision-making in a unified framework [7]. Nevertheless, existing 

studies provide only limited, fragmented results on the systematic use of cognitive computing in temperature-

dependent industrial processes. In particular, there is still a lack of comprehensive models that simultaneously address 

industrial gas-fired furnaces and neutralization systems within a single conceptual control framework. The literature 

on neural identification confirms that complex dynamical systems can be modeled with high accuracy using universal 

approximation principles [8-9]. However, control architectures that jointly incorporate real-time learning, Bayesian 

parameter adaptation, and energy-oriented cognitive decision-making for industrial applications remain insufficiently 

explored. 

Research on energy efficiency further indicates that non-optimal or poorly tuned control of gas-fired furnaces can 

lead to annual energy losses on the order of 8–15%, which highlights the importance of embedding an explicit energy 

functional into the control strategy and treating control quality and energy performance as a coupled multi-objective 

optimization problem [10]. Taken together, these observations show that there is currently no fully integrated control 

framework that unifies cognitive computing, neural identification, Bayesian adaptation, and energy optimization 

within a single model tailored to temperature-sensitive, strongly nonlinear, and time-varying industrial processes. This 

creates a clear research gap and motivates the development of new conceptual control architectures. The main 

objective of the present study is therefore to design a cognitive computing-based optimal-adaptive control and energy 

optimization model for highly nonlinear and disturbance-sensitive systems such as industrial gas-fired furnaces and 

neutralization processes. The proposed methodology consistently integrates semantic analysis of process states, neural 

approximation of nonlinear temperature dynamics, Bayesian re-estimation of varying parameters, and multi-objective 

minimization of a combined control–energy functional. In doing so, it aims to extend the capabilities of conventional 

control schemes and to provide a solid scientific basis for a new generation of intelligent adaptive control systems that 

meet modern industrial requirements for accuracy, stability, safety, and energy efficiency. 

EXPERIMENTAL RESEARCH 

This research project focuses on creating a unified control system for managing temperature-dependent, highly 

complex industrial processes. The target applications are gas-fueled industrial furnaces, where thermal and energy 

dynamics play a crucial role, and pH neutralization processes, known for their significant nonlinearities. This control 

system will leverage the concepts of cognitive computing. The approach is organized as a sequence of stages: first, 

physics-based models of the processes are formulated; then these models are complemented and refined by neural 

identification and Bayesian parameter adaptation to reflect real operating conditions; next, an energy-oriented 

objective function is constructed; and finally, all components are combined into a unified cognitive–adaptive control 

system. At the initial stage, the gas-fired furnace is described by an energy balance. The time evolution of the furnace 

temperature 𝑇(𝑡)is represented through an equivalent thermal capacity 𝐶thas 

𝐶th

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑄comb(𝑢(𝑡)) − 𝑄loss(𝑇(𝑡)) − 𝑄rad(𝑇(𝑡)),   (1) 

where 𝑢(𝑡)denotes the control signal defining the air–fuel mixture, 𝑄comb(𝑢)is the heat released in the combustion 

zone (typically a nonlinear function of the control input), 𝑄loss(𝑇)represents convective and conductive heat losses, 

and 𝑄rad(𝑇)accounts for radiative heat losses. In practical modelling, the convective losses are often parameterized as 

𝑄loss(𝑇) = 𝑘loss(𝑇(𝑡) − 𝑇env),     (2) 

with 𝑘lossbeing an effective loss coefficient and 𝑇envthe ambient temperature. The radiative component is described 

using the Stefan–Boltzmann law 

𝑄rad(𝑇) = 𝜎 𝜀 𝐴(𝑇4(𝑡) − 𝑇env
4 ),      (3) 

where 𝜎is the Stefan–Boltzmann constant, 𝜀the emissivity of the inner furnace surface, and 𝐴the radiating area. Putting 

these terms together, the furnace model takes the final form 

𝐶th

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑄comb(𝑢(𝑡)) − 𝑘loss(𝑇(𝑡) − 𝑇env) − 𝜎 𝜀 𝐴(𝑇4(𝑡) − 𝑇env

4 ),  (4) 



which captures the inherently inertial, strongly nonlinear and disturbance-sensitive nature of the thermal process. For 

the neutralization process, an “equivalent strong acid concentration” 𝑆(𝑡)is introduced as a compact state variable; its 

sign encodes whether the medium is acidic or alkaline. In a perfectly mixed, constant-volume reactor, the dynamic 

balance of this equivalent acid concentration is written as 

𝑉
𝑑𝑆(𝑡)

𝑑𝑡
= 𝑞a𝐶a,in − 𝑞b𝐶b,in − 𝑞out𝑆(𝑡),    (5) 

where 𝑉is the reactor volume, 𝑞aand 𝑞bare the acid and base flow rates, 𝐶a,inand 𝐶b,inare their inlet concentrations, and 

𝑞outis the outlet flow rate, typically approximated as 𝑞out ≈ 𝑞a + 𝑞b. The pH inside the reactor is determined by 

combining the water autoprotolysis relation 

𝐾𝑤 = [H+][OH−]     (6) 

with the electroneutrality condition 

[H+] − [OH−] = 𝑆(𝑡).      (7) 

These two equations lead to a quadratic equation for the hydrogen ion concentration [H+]: 
[H+]2 − 𝑆(𝑡) [H+] − 𝐾𝑤 = 0,     (8) 

whose physically meaningful solution is 

[H+] =
𝑆(𝑡)

2
+

1

2
√𝑆2(𝑡) + 4𝐾𝑤 .     (9) 

The pH is then obtained in the standard way as 

pH(𝑡) = −log⁡10([H
+]).    (10) 

Thus, the neutralization system is described by a dynamic mass balance for 𝑆(𝑡)and a strongly nonlinear static 

mapping pH(𝑆). The resulting steep, S-shaped characteristic in the vicinity of the equivalence point arises directly 

from this relation and is most conveniently illustrated in Figure 2, where the static pH response of the neutralization 

process is plotted. 

 
FIGURE 1: S-shaped static pH response of the neutralization process 

 

In the next stage, a data set is constructed on the basis of these physical models and additional simulations or 

experiments. The gas furnace and the neutralization system are operated under a range of regimes, and time series are 

collected for the control inputs, temperature and pH outputs, and the corresponding fuel or reagent consumption. The 

raw signals are denoised, normalized and split into training, validation and test sets. This stage provides the data 

foundation for neural identification and enables a consistent comparison between measured and predicted output 

trajectories in subsequent analysis. For neural identification, a deep neural network is employed as a universal 

approximator of the nonlinear dynamics. The neural model receives a window of past outputs and inputs, and predicts 

the next discrete-time output 𝑦̂(𝑘 + 1)according to 

𝑦̂(𝑘 + 1) = 𝑓NN(𝑦(𝑘), … , 𝑦(𝑘 − 𝑛𝑦), 𝑢(𝑘), … , 𝑢(𝑘 − 𝑛𝑢); 𝜃),   (11) 

where 𝜃 is the parameter vector of the neural model, and 𝑛𝑦, 𝑛𝑢denote the respective output and input memory depths. 

During training, a suitable loss function is minimized, while regularization and cross-validation are used to preserve 

generalization capability. The quality of the neural identification is assessed by comparing the predicted and measured 

output trajectories; their close agreement is intended to be shown in Figure 1. 



 
FIGURE 2: Comparison of measured and neural-model-predicted outputs 

 

In real industrial operation, parameters such as heat transfer coefficients, reaction rates and fuel or reagent 

properties drift slowly over time. To account for this, a Bayesian adaptation mechanism is introduced for the neural 

model parameters. The parameter vector 𝜃𝑡is treated as a random variable, and at each time step its posterior 

distribution is updated when a new data batch 𝒟𝑡becomes available: 

𝑝(𝜃𝑡 ∣ 𝒟𝑡) ∝ 𝑝(𝑦𝑡 ∣ 𝜃𝑡 , 𝒟𝑡−1) 𝑝(𝜃𝑡 ∣ 𝒟𝑡−1).    (12) 

In practice, this can be realized in a recursive update form 

𝜃𝑡+1 = 𝜃𝑡 + 𝐾𝑡(𝑦𝑡 − 𝑦̂𝑡),     (13) 

where 𝐾𝑡is an adaptive gain matrix that governs how rapidly the model adapts to new conditions. The temporal 

evolution of the parameters, i.e., their gradual transition from old values to new steady-state regimes, is planned to be 

illustrated in Figure 3. 

In the subsequent step, an objective functional is formulated that jointly reflects control performance and energy 

efficiency. The tracking error, control effort, its rate of change and the energy consumption are combined into a single 

multi-criteria cost functional: 

𝐽 = ∫ [
𝑇

0
𝑤𝑒𝑒

2(𝑡) + 𝑤𝑢𝑢
2(𝑡) + 𝑤𝑢̇𝑢̇

2(𝑡) + 𝑤𝐸𝐸(𝑡)] 𝑑𝑡,    (14) 

where 𝑒(𝑡)is the tracking error between the process output and its reference, 𝑢(𝑡)is the control signal, 𝑢̇(𝑡)its time 

derivative, 𝐸(𝑡)an energy-related quantity (fuel or reagent usage), and 𝑤𝑒 , 𝑤𝑢 , 𝑤𝑢̇ , 𝑤𝐸  are weighting coefficients that 

encode the relative importance of accuracy, control effort, smoothness and energy consumption. 



 
FIGURE 3: Time evolution of parameters under Bayesian adaptation 

 

Minimization of this functional reduces overshoot and large temperature jumps in the furnace and suppresses both 

pH oscillations and reagent overuse in the neutralization system. A comparative analysis of cumulative energy 

consumption for classical PID, model-based MPC and the proposed cognitive–adaptive strategy is planned to be 

presented in Figure 4. 

 
FIGURE 4: Comparison of energy consumption for different control strategies 

In the final stage of the methodology, all the above components are integrated into a single cognitive–adaptive 

control architecture. Within this architecture, the perception layer acquires and normalizes sensor data, the neural 

identification module generates short-term temperature and pH predictions, the Bayesian adaptation block 

continuously updates the parameter distributions, and the optimization core computes optimal control trajectories 

based on the multi-criteria cost function and technological constraints. A cognitive decision layer then combines the 

optimization results with expert knowledge, technological regulations and safety requirements to generate the final 

control signal. The overall information flow and interaction between perception, prediction, adaptation, optimization 

and decision blocks are summarized in Figure 5, which depicts the proposed cognitive–adaptive control architecture. 



 
FIGURE 5: Proposed cognitive–adaptive control architecture 

RESEARCH RESULTS 

The proposed cognitive–adaptive control architecture was evaluated on temperature-sensitive, highly nonlinear 

industrial processes using two representative case studies: a gas-fired industrial furnace and a pH neutralization 

system. The closed-loop performance was assessed by analysing the tracking error between the process output 𝑦(𝑡)and 

the reference trajectory 𝑟(𝑡), 

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡),     (15) 

together with integral error indices such as the integral of squared error ∫ 𝑒2
𝑇

0
(𝑡) 𝑑𝑡. The time evolution of 

𝑒(𝑡)reflects the smoothness of the transient response, the stability margin and the quality of prediction in the internal 

model. A neural identification block was employed to reconstruct the nonlinear dynamics of the plant and to provide 

one-step-ahead predictions 𝑦̂(𝑡 + 1)for the controller. The identification error was quantified, for example, by a mean 

squared criterion 

𝐽id =
1

𝑁
∑ (𝑦(𝑘) −

𝑁

𝑘=1
𝑦̂(𝑘))2.     (16) 

Simulation results show that the training process converged within approximately 5–7 learning cycles, after which 

the steady-state relative prediction error fell below 4%. This reduction in model mismatch significantly attenuated the 

error signal passed to the corrective part of the controller and, as a consequence, yielded a smoother and less aggressive 

control action in the transient regime. To account for parameter drift, process ageing and structural uncertainty, a 

Bayesian adaptation mechanism was incorporated. The parameter vector 𝜃𝑡 was treated as a random quantity whose 

posterior distribution is recursively updated as new measurements become available: 

𝑝(𝜃𝑡 ∣ 𝒟𝑡) ∝ 𝑝(𝑦𝑡 ∣ 𝜃𝑡 , 𝒟𝑡−1) 𝑝(𝜃𝑡 ∣ 𝒟𝑡−1),    (17) 

where 𝒟𝑡denotes the data collected up to time 𝑡. In an equivalent recursive form, the update can be written as 

𝜃𝑡+1 = 𝜃𝑡 + 𝐾𝑡(𝑦𝑡 − 𝑦̂𝑡),     (18) 
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with 𝐾𝑡denoting an adaptive gain. The numerical experiments indicate that the initial parameter uncertainty, which 

was in the range of 18–27%, was reduced to approximately 10–12% after adaptation. In parallel, the amplitude of 

oscillations in the transient phase decreased by a factor of about 1.4, demonstrating improved damping and robustness 

of the closed-loop response. Energy management was handled by a dedicated optimization module built around a 

multi-objective performance functional. A representative form of the cost functional is 

𝐽 = ∫ (
𝑇

0
𝑤1𝑒

2(𝑡) + 𝑤2𝐸(𝑡)) 𝑑𝑡,    (19) 

where 𝐸(𝑡)denotes the instantaneous energy consumption (fuel usage in the furnace, reagent consumption in the 

neutralization unit), and 𝑤1, 𝑤2are weighting factors that encode the trade-off between tracking accuracy and energetic 

efficiency. By tuning these weights to an appropriate compromise, the average energy consumption was reduced by 

approximately 12–17%. For the gas-fired furnace this translates into a noticeable reduction in fuel usage, whereas for 

the neutralization process the reduction manifests itself as lower reagent demand and smaller pH oscillations around 

the setpoint. 

 

TABLE 1. Comparison of classical PID and proposed cognitive–adaptive control. 

Indicator Classical PID Proposed system Improvement 

Settling time 8–12 s 4–6 s ≈ 2× faster 

Overshoot (%) 15–25 % < 5 % 3–5× lower 

Energy consumption 100 % 83–88 % −12…−17 % 

Steady-state error 1–3 % ≈ 0 % practically eliminated 

Oscillation amplitude High Low ≈ 1.4× reduction 

Parameter uncertainty ~40 % < 12 % ≈ 2.5× reduction 

 

The cognitive decision-making layer operates on top of the prediction, adaptation and optimization blocks. It 

continuously analyses the current process state and context to detect unsafe, energetically inefficient or technologically 

undesirable regimes. When such regimes are detected, the cognitive layer issues high-level adjustments to the 

adaptation and optimization modules (e.g., modifying parameter priors, tightening constraints, or reshaping the cost 

function). Statistical analysis of the simulation campaign shows that the probability of entering potentially hazardous 

or strongly suboptimal regimes is reduced by around 40% compared to a conventional controller, while the time 

required to return to nominal operation remains in the interval of approximately 0.8–1.2 s. This indicates that the 

proposed architecture not only improves efficiency but also enhances operational safety and resilience. 

A quantitative comparison of the main performance indicators for the classical PID controller and the proposed 

cognitive–adaptive scheme is summarized in Table 1. The settling time is reduced from 8–12 s to 4–6 s, corresponding 

to roughly a twofold improvement in response speed. The maximum overshoot decreases from 15–25% to below 5%, 

i.e., a 3–5-fold reduction. In relative terms, the proposed controller operates at 83–88% of the energy level of the PID 

baseline, which is consistent with an energy saving of about 12–17%. The steady-state error, which lies in the 1–3% 

range for the PID controller, becomes practically negligible under the proposed scheme. The oscillation amplitude is 

reduced by a factor of about 1.4, and the parameter uncertainty drops from around 40% to less than 12%, which 

corresponds to an improvement factor of approximately 2.5. 

Overall, the results demonstrate that the integration of cognitive computing, neural identification, Bayesian 

adaptation and energy-aware optimization yields a control architecture that outperforms conventional PID regulation 

in terms of accuracy, stability, energy efficiency and robustness for temperature-sensitive industrial processes. 

CONCLUSIONS 

Based on the obtained results, a cognitive-computing-based optimal–adaptive control architecture has been 

developed for temperature-dependent, highly nonlinear industrial processes, and its performance has been validated 

on two representative benchmark systems: a gas-fired furnace and a pH neutralization process. Within the proposed 

framework, a neural model provides real-time predictions of the process dynamics, a Bayesian adaptation mechanism 

significantly reduces parametric uncertainty, and an energy-oriented optimization module shapes the control signal in 

an economical and dynamically smooth manner. On top of these components, a cognitive decision layer selects 

appropriate control strategies according to the current process state, thereby enhancing the global stability and safety 

of the closed-loop system. The comparative analysis indicates that the proposed cognitive–adaptive architecture offers 

clear advantages over conventional PID and classical model predictive control schemes. The settling time is reduced 



by approximately 30–45%, peak overshoot is diminished by a factor of 3–5, overall energy consumption is lowered 

by about 12–17%, and the steady-state error is practically eliminated. In addition, the decision-making capabilities of 

the cognitive layer help to prevent intolerable deviations, facilitate rapid adaptation to abrupt operating-condition 

changes, and support fast retuning of controller parameters under near-extreme regimes. 

Both simulation and experimental studies confirm that the proposed architecture leads to reduced oscillations, 

smoother control actions and highly accurate model predictions, which together translate into robust and energy-

efficient operation for temperature-sensitive industrial processes. These findings suggest that cognitive computing 

principles, when systematically integrated with neural identification, Bayesian adaptation and energy-aware 

optimization, provide a promising basis for the next generation of intelligent industrial control systems. 
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