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Abstract. This paper presents an enhanced methodology for selective pole control in linear time-invariant electrical
systems using matrix canonicalization. Modern electric power systems require advanced mathematical tools capable of
modifying only a subset of dominant poles without disturbing the remaining dynamic characteristics. The proposed
approach establishes the conditions under which partial pole relocation is achievable and provides a constructive method
for synthesizing a family of controllers ensuring the desired eigenvalue placement. Simulation results for a synchronous
generator equipped with an automatic voltage regulator demonstrate the effectiveness of the method and confirm the
preservation of non-target eigenvalues. The findings are relevant for designing optimal control strategies, improving system
stability, and developing advanced excitation systems.

INTRODUCTION

Contemporary electric power systems (EPS) exhibit considerable complexity, featuring sophisticated control
architectures and pronounced dynamic interactions among their components. Central to electricity generation,
synchronous generators are integrated with high-performance Automatic Voltage Regulators (AVRs) to ensure rapid
and precise voltage control. These regulators substantially expand the domain of stable operation and influence the
damping of power and voltage oscillations [1]. The effectiveness of such controllers is explained by their ability to
impact the generator parameters in real-time and shape the required properties of transient processes [2].

Given the increasing structural complexity of EPS, the growth of distributed generation, the emergence of long
power transit flows, and the implementation of market control mechanisms, the requirements for stability and
regulation quality are increasing [3]. In this regard, methods for the analysis and synthesis of control devices continue
to actively evolve. Particular attention is paid to methods based on the state-space representation of the system, which
enables the application of matrix control technologies [4].

Over the past three decades, a significant number of pole placement methods and their modifications have been
developed for multivariable linear systems. The number of such approaches exceeds several hundred, including the
classical Kalman method [2], modal control techniques [3], methods based on stratification and matrix zeros [4], as
well as newer approaches utilizing numerical stability methods and pseudospectral analysis [5].

The problem of selective pole assignment (selective pole shifting) is highly relevant for the synthesis of control
regulators [6]. In many practical situations, it is necessary to change only the dominant poles that determine the quality
of transient processes, while the remaining eigenvalues are preserved without alteration. The reasons for this problem
formulation are as follows [7]:

The system's dynamics are predominantly determined by a small group of poles.

The correction of all parameters in a complex system is redundant and complicates the regulator's implementation
[8].

In the case of partial controllability, it is impossible to shift all poles by definition [9].

This paper examines the necessary and sufficient conditions under which a selective shift of a subset of the poles
of a linear time-invariant system is possible without changing the others [10-12]. To solve this problem, the
canonicalization method is used, which allows for the synthesis of a set of controllers that satisfy the required dynamic
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characteristics of the system. Furthermore, practical calculations are performed for a synchronous generator model
with an AVR, based on the equations presented in [13-15], demonstrating the effectiveness of the proposed approach.

SELECTIVE POLE ASSIGNMENT PROBLEM

Pole placement in a linear time-invariant system is traditionally performed under the assumption of complete
controllability. When this condition is met, all eigenvalues of the closed-loop system can be arbitrarily assigned [16].
However, engineering applications often require only a subset of these eigenvalues to be shifted. Dominant poles,
which govern the speed and damping of transient responses, typically require adjustment, whereas the remaining poles
may remain unchanged [17].

Selective pole control is feasible only when certain algebraic conditions are satisfied. The canonicalization method
allows reformulating the system representation such that the influence of the controller on each pole becomes
explicitly characterized through matrix stratification. This method ensures the ability to reposition a specified
eigenvalue A to a desired location Aqesirea Without altering the non-target eigenvalues. The general controller structure
includes degrees of freedom, enabling additional tuning without affecting the relocated poles [18].

Consider a system represented by a dynamic object described in the state-space form as in [19].

px(p) = Ax(p) +Bu(p) +xo, M

where x(p) is the n-dimensional state vector; u(p) is the s-dimensional control vector; A and B are numerical
matrices determining the system's properties; and K is the static controller (gain matrix) in the feedback loop.

u(p) =—Kx(p). )

Let A, denote the complete set of eigenvalues of matrix A, corresponding to the poles of the original system, where
each element may, in general, assume complex values. Within this set, let us identify a subset A,, consisting of g
poles that require reassignment, while the complementary subset A,.; contains the remaining n — g poles whose
positions are to remain unchanged [20].

The following assumptions are adopted in accordance with [4].:
the poles belonging to A, that are subject to relocation are known in advance, whereas knowledge of the remaining
poles is not required.
none of the poles in A, appears with multiplicity in the complementary set An.,, which ensures the condition AgNAx.
g=®.

Under these assumptions, the problem considered here is to establish the necessary and sufficient conditions that
guarantee the ability to shift the poles in A, to arbitrarily prescribed locations, despite the fact that the poles in Ang
remain unknown. In addition, the task includes the synthesis of all controllers capable of achieving such selective pole
relocation. Importantly, the eigenvalues belonging to the subset An. are not required for solving the problem [6].

To address this issue, we draw upon the result established in [3]. Specifically, for an arbitrary linear dynamic
system of the form (1), any known real pole A can be reassigned to a new desired location Agesirea Without affecting the
remaining poles. This is accomplished via the state-feedback law (2), constructed using a controller that belongs to
the following class of admissible regulators:

__R
{Kn = ((@BR)N(A — Adesirea) + OB 1)0, (3)
if for the stratification matrix ®, calculated by the formula
L
O@=A-h , 4)
the condition is satisfied
OB % 0. )

Here 1 is an arbitrary matrix of size (s — rank(®@B))x1.

RESULTS AND DISCUSSION

The analysis is conducted on a simplified electrical system.
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FIGURE 1. Schematic representation of the electrical system.

This study utilizes the mathematical model of the controlled electric power system presented in [5], considering
the configuration that includes an automatic voltage regulator. The analysis is carried out under the simplifying
assumption that the time constants of the converter, measuring unit, and amplifier are negligible, i.e., T=Tn=T.=0.
Under these conditions, the system of equations describing the EPS can be reduced to the following form:

T.(d’A5/dt*) =—P,(dAS/ dt) — AP, (6)
T, (AE',/dt)=AE  —AE,. (7

The deviation of the EMF will be represented as:
=k,,A0 +k,, d(ﬁf) +k,,AU,,. ®)

Differential equation (7) may be expressed in the following form [6]:
T',(AE, /dt)=AE —AE,, ©)
where T’ represents the time constant of the synchronous generator’s excitation winding when the stator winding

is short-circuited.
The following notations are introduced:

AS =x; _ddAt5 =X,; AE =x,.

Taking into account the introduced designations and taking into account (8) and (9), equations (7) and (8) have the
form:

&y
a7 (10)
dx
d_tz =-kxi—-k,x2-k,AU,,
dxs
E:—k4x3+k4Aqu,
1 1
k=—(c,tbky), k,=— (£, +bk), k;= b Koy k=
T T T; Td
By incorporating the regularizing equation, we obtain:
x =Ax+Bu,
y=Cx, (11)
u=u,
where
01 0 00 100
A=|k, k, 0 |, B=|-k3 0|, C=|010],
0 0 Xk, 0 k4 1001
d(A6) _[AUg
x =%, y= .
X2 y= AEq

The initial parameters of the electrical power system are deﬁned as follows: §0=60°; Uc=0.99; E;=1.88; Ps=1;
x¢=2.095; x’¢=0.29; x=0.12; Tj=6sec.; Tao=4.35sec. The automatic voltage regulator is configured using the tuning
coefficients ko,=25; kos=3; ki5=2, which represent the corresponding gains in the voltage and rotor-angle control

channels.
By solving the system of equations (10) we obtain a matrix of coefficients:



0 1 0 0 0
A=|-0.4135 -0.375 0 |;B=[-142 O
0 0 -5.88 0 5388
with eigenvalues A;=—5.78; A»3=—0.1775+0.6251j.

Assume that the pole A; =—5.78 is to be relocated to the desired position Adesired = —7.3.
The corresponding matrix can then be calculated as follows:

58 1 0
A=2,1, =|-0.4135 -5.505 0.
0 0 0

By canonization of this matrix one can define
L

©=A-A1, =[0 0 1]; ®B=[0 5.88];
R R
®B =[1;0]; ®B =[0;0.1701].
Condition (5) is satisfied, and the formula for the controller (3) gives the following set of values
R
g 00
K} = ((OB%) ~ (4~ Aaesirea) + 6B mO =7 " | (12)
where 1) is any real number. Varying the parameter 1 changes the system's zeros without affecting the position of
its poles.

Direct calculations can verify that any of the controllers (12) provides the desired eigenvalues in the system: A; =
—7.3; h23=—0.1775 + 0.6251j.

Presented here is a three-dimensional visualization of the pseudospectrum of matrix A, obtained using the EigTool
module [7] developed at Oxford University in conjunction with Matlab. The horizontal plane corresponds to the real
and imaginary axes of the complex plane, while the vertical axis depicts the logarithm of the norm of the resolvent
function. The peaks in this representation indicate the locations of the matrix’s eigenvalues.
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FIGURE 2. 3D visualization of the pseudo-spectrum of the electrical system model:
a) initial electrical system model; b) system model after displacement of one pole.

A three-dimensional representation of the pseudospectrum of matrix A is presented here. The visualization was
produced using the EigTool module [7] in the Matlab environment, which allows one to examine how the eigenvalues
of a matrix behave under small perturbations. In the figure, the two horizontal axes correspond to the real and
imaginary parts of the complex plane, while the vertical axis shows the logarithm of the resolvent norm. The elevated
peaks on the surface clearly mark the locations of the eigenvalues, making it easy to see how they are distributed and
how sharply they are defined.

CONCLUSIONS



The findings of the research indicate that advanced matrix-oriented analytical frameworks—particularly
stratification and system canonization—provide an effective foundation for addressing the problem of selective pole
manipulation in linear time-invariant systems. The study establishes that, as long as controllability requirements are
met and the pole configuration is suitable, the target eigenvalues can be reassigned while leaving the remaining
dynamic characteristics of the system unchanged.

Furthermore, the paper demonstrates that the canonization procedure makes it possible to construct an entire class
of controllers capable of enforcing the prescribed pole relocation. Importantly, these controllers retain internal
parameter freedoms that do not affect eigenvalue placement. This structural flexibility allows for further refinement
of the controller with respect to a broad range of performance metrics, including energy consumption, control-effort
constraints, oscillation suppression, and others.

Computational experiments carried out for a power-system model incorporating a synchronous generator and an
automatic voltage regulator substantiate the theoretical results. Adjusting the dominant pole led to a measurable
improvement in dynamic behavior and an increase in stability margins, all while preserving the structure of the
remaining modal responses. Visualization of the pseudospectrum using the EigTool package revealed the
displacement and clustering of eigenvalues under the influence of the synthesized controller.

The outcomes of this work can be applied to the development of automatic excitation control systems, the design
of optimal regulators for large-scale electric power grids, and the stability assessment of systems featuring distributed
generation. The proposed methodology also offers a basis for future research, including potential extensions to
nonlinear dynamics and stochastic models.
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