
V International Scientific and
Technical Conference Actual Issues
of Power Supply Systems

Selective Pole Placement in Linear Electrical Systems Using
Matrix Canonicalization

AIPCP25-CF-ICAIPSS2025-00280 | Article

PDF auto-generated using ReView
from



Selective Pole Placement in Linear Electrical Systems 

Using Matrix Canonicalization 

Tokhir Makhmudov 

Tashkent state technical university named after Islam Karimov, Tashkent, Uzbekistan 

a) Corresponding author: t.maxmudov@tdtu.uz  

Abstract. This paper presents an enhanced methodology for selective pole control in linear time-invariant electrical 

systems using matrix canonicalization. Modern electric power systems require advanced mathematical tools capable of 

modifying only a subset of dominant poles without disturbing the remaining dynamic characteristics. The proposed 

approach establishes the conditions under which partial pole relocation is achievable and provides a constructive method 

for synthesizing a family of controllers ensuring the desired eigenvalue placement. Simulation results for a synchronous 

generator equipped with an automatic voltage regulator demonstrate the effectiveness of the method and confirm the 

preservation of non-target eigenvalues. The findings are relevant for designing optimal control strategies, improving system 

stability, and developing advanced excitation systems. 

INTRODUCTION 

Contemporary electric power systems (EPS) exhibit considerable complexity, featuring sophisticated control 

architectures and pronounced dynamic interactions among their components. Central to electricity generation, 

synchronous generators are integrated with high-performance Automatic Voltage Regulators (AVRs) to ensure rapid 

and precise voltage control. These regulators substantially expand the domain of stable operation and influence the 

damping of power and voltage oscillations [1]. The effectiveness of such controllers is explained by their ability to 

impact the generator parameters in real-time and shape the required properties of transient processes [2]. 

Given the increasing structural complexity of EPS, the growth of distributed generation, the emergence of long 

power transit flows, and the implementation of market control mechanisms, the requirements for stability and 

regulation quality are increasing [3]. In this regard, methods for the analysis and synthesis of control devices continue 

to actively evolve. Particular attention is paid to methods based on the state-space representation of the system, which 

enables the application of matrix control technologies [4]. 

Over the past three decades, a significant number of pole placement methods and their modifications have been 

developed for multivariable linear systems. The number of such approaches exceeds several hundred, including the 

classical Kalman method [2], modal control techniques [3], methods based on stratification and matrix zeros [4], as 

well as newer approaches utilizing numerical stability methods and pseudospectral analysis [5]. 

The problem of selective pole assignment (selective pole shifting) is highly relevant for the synthesis of control 

regulators [6]. In many practical situations, it is necessary to change only the dominant poles that determine the quality 

of transient processes, while the remaining eigenvalues are preserved without alteration. The reasons for this problem 

formulation are as follows [7]: 

The system's dynamics are predominantly determined by a small group of poles. 

The correction of all parameters in a complex system is redundant and complicates the regulator's implementation 

[8]. 

In the case of partial controllability, it is impossible to shift all poles by definition [9]. 

This paper examines the necessary and sufficient conditions under which a selective shift of a subset of the poles 

of a linear time-invariant system is possible without changing the others [10-12]. To solve this problem, the 

canonicalization method is used, which allows for the synthesis of a set of controllers that satisfy the required dynamic 
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characteristics of the system. Furthermore, practical calculations are performed for a synchronous generator model 

with an AVR, based on the equations presented in [13-15], demonstrating the effectiveness of the proposed approach. 

SELECTIVE POLE ASSIGNMENT PROBLEM 

Pole placement in a linear time-invariant system is traditionally performed under the assumption of complete 

controllability. When this condition is met, all eigenvalues of the closed-loop system can be arbitrarily assigned [16]. 

However, engineering applications often require only a subset of these eigenvalues to be shifted. Dominant poles, 

which govern the speed and damping of transient responses, typically require adjustment, whereas the remaining poles 

may remain unchanged [17]. 

Selective pole control is feasible only when certain algebraic conditions are satisfied. The canonicalization method 

allows reformulating the system representation such that the influence of the controller on each pole becomes 

explicitly characterized through matrix stratification. This method ensures the ability to reposition a specified 

eigenvalue λ to a desired location λdesired without altering the non-target eigenvalues. The general controller structure 

includes degrees of freedom, enabling additional tuning without affecting the relocated poles [18]. 

Consider a system represented by a dynamic object described in the state-space form as in [19]. 

                                                                      0px(p) Ax(p) Bu(p) x ,= + +                                               (1) 

where x(p) is the n-dimensional state vector; u(p) is the s-dimensional control vector; A and B are numerical 

matrices determining the system's properties; and K is the static controller (gain matrix) in the feedback loop. 

                                                                               u(p) Kx(p).= −                                                (2) 

Let Λₙ denote the complete set of eigenvalues of matrix A, corresponding to the poles of the original system, where 

each element may, in general, assume complex values. Within this set, let us identify a subset Λn,  consisting of g 

poles that require reassignment, while the complementary subset Ʌn-g contains the remaining n – g poles whose 

positions are to remain unchanged [20]. 

The following assumptions are adopted in accordance with [4].: 

- the poles belonging to Λn that are subject to relocation are known in advance, whereas knowledge of the remaining 

poles is not required. 

- none of the poles in Λn appears with multiplicity in the complementary set Ʌn-g, which ensures the condition Λg∩Ʌn-

g=∅. 

Under these assumptions, the problem considered here is to establish the necessary and sufficient conditions that 

guarantee the ability to shift the poles in Λn to arbitrarily prescribed locations, despite the fact that the poles in Ʌn-g 

remain unknown. In addition, the task includes the synthesis of all controllers capable of achieving such selective pole 

relocation. Importantly, the eigenvalues belonging to the subset Ʌn-g are not required for solving the problem [6].  

To address this issue, we draw upon the result established in [3]. Specifically, for an arbitrary linear dynamic 

system of the form (1), any known real pole λ can be reassigned to a new desired location λdesired without affecting the 

remaining poles. This is accomplished via the state-feedback law (2), constructed using a controller that belongs to 

the following class of admissible regulators: 

                       {𝐾}𝜂 = ((𝛩𝐵𝑅)∼(𝜆 − 𝜆𝑑𝑒𝑠𝑖𝑟𝑒𝑑) + 𝛩𝐵
____ 𝑅

𝜂)𝛩,                                           (3) 

if for the stratification matrix Θ, calculated by the formula  

                                   
L________

nA I , = −                                                 (4) 

the condition is satisfied 

                                                                 B 0.                                                                          (5) 

Here η is an arbitrary matrix of size (s – rank(ΘB))×1. 

 

 

RESULTS AND DISCUSSION 

The analysis is conducted on a simplified electrical system. 
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FIGURE 1. Schematic representation of the electrical system. 

 
This study utilizes the mathematical model of the controlled electric power system presented in [5], considering 

the configuration that includes an automatic voltage regulator. The analysis is carried out under the simplifying 
assumption that the time constants of the converter, measuring unit, and amplifier are negligible, i.e., Tc=Tm=Ta=0. 
Under these conditions, the system of equations describing the EPS can be reduced to the following form: 

                                            2 2

j dT (d / dt ) P (d / dt) – Р,  = −                                                      (6) 

                                                  
do q qe qT ( E ' / dt) E E . =  −                                                           (7) 

The deviation of the EMF will be represented as: 

                                              
q 0 1 0u G

d( )
E k k k U .

dt
 





 =  + +                                                   (8) 

Differential equation (7) may be expressed in the following form [6]: 

                                                              
d q qe qT’ ( E / dt) E E , =  −                                                            (9) 

where T’d represents the time constant of the synchronous generator’s excitation winding when the stator winding 
is short-circuited. 

The following notations are introduced: 

1 2 q 3

d
x ;  x ;  E =x .

dt





 = =   

Taking into account the introduced designations and taking into account (8) and (9), equations (7) and (8) have the 
form:     

                                                                          

1
2

2
1 21 2 3 G

3

4 3 4 qe

dx
x ,

dt

dx
k x k x k U ,

dt

dx
k x k E ,    

dt

=

= − − − 

= − + 

                                                  (10) 

1 1 1 0δ 2 1 1 3 1 0u 4 '

j j j

1 1 1 1
k = (c +b k ),  k = ( ),  k = b k ,  k = . 

T T T T
d

d

P b k +  

By incorporating the regularizing equation, we obtain: 
            x=Ax+Bu, 

                                                       y=Cx,                                                                     (11) 
           u=u, 

where 

1 2

4

 0    1     0   0   0 1  0  0

A= -k   -k   0 ,   B= -k3  0 ,  C= 0  1  0 ,

  0  k4 0  0  1 0    0    -k

     
     
     
         

 

𝑥̇ = [

𝑥̇1

𝑥̇2

𝑥̇3

] ,  y=Δ𝐸𝑞 = [

  Δδ
𝑑(Δδ)

dt
  ΔE𝑞

] , u= [
𝛥𝑈𝐺

ΔE𝑞
]. 

The initial parameters of the electrical power system are defined as follows: δ0=600; Uc=0.99; Eq=1.88; Pd=1; 
xd=2.095; x’d=0.29; xc=0.12; Tj=6sec.; Td0=4.35sec. The automatic voltage regulator is configured using the tuning 
coefficients k0u=25; k0δ=3; k1δ=2, which represent the corresponding gains in the voltage and rotor-angle control 
channels. 

By solving the system of equations (10) we obtain a matrix of coefficients: 
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     0           1           0     0       0

A= -0.4135  -0.375      0 ;  B= -1.42    0

     0           0       -5.88     0    5.88

   
   
   
      

 

with eigenvalues λ1=‒5.78; λ2,3=‒0.1775±0.6251j. 
Assume that the pole λ1 = ‒5.78 is to be relocated to the desired position λdesired = ‒7.3. 
The corresponding matrix can then be calculated as follows: 

3 3

   5.88         1        0

-0.4135  -5.505    0 .

     0            0        0

− =A I
 

By canonization of this matrix one can define 
__________

3 3

         ____

[0  0  1];  B=[0  5.88]; 

      B [1;0];  B [0;0.1701].

 = − = 

 =  =

L

R R

A I  

Condition (5) is satisfied, and the formula for the controller (3) gives the following set of values 

                                         {𝐾}𝜂 = ((𝛩𝐵𝑅) ∼ (𝜆1 − 𝜆𝑑𝑒𝑠𝑖𝑟𝑒𝑑) + 𝛩𝐵
____ 𝑅

𝜂)𝛩 = |
0  0    𝜂
0  0  0.19

|,                     (12) 

where η is any real number. Varying the parameter η changes the system's zeros without affecting the position of 
its poles. 

Direct calculations can verify that any of the controllers (12) provides the desired eigenvalues in the system: λ1 = 
–7.3; λ2,3 = –0.1775 ± 0.6251j. 

Presented here is a three-dimensional visualization of the pseudospectrum of matrix A, obtained using the EigTool 
module [7] developed at Oxford University in conjunction with Matlab. The horizontal plane corresponds to the real 
and imaginary axes of the complex plane, while the vertical axis depicts the logarithm of the norm of the resolvent 
function. The peaks in this representation indicate the locations of the matrix’s eigenvalues. 

  

                                              а)                                                                             b)   

FIGURE 2. 3D visualization of the pseudo-spectrum of the electrical system model: 
a) initial electrical system model; b) system model after displacement of one pole. 

 

A three-dimensional representation of the pseudospectrum of matrix A is presented here. The visualization was 

produced using the EigTool module [7] in the Matlab environment, which allows one to examine how the eigenvalues 

of a matrix behave under small perturbations. In the figure, the two horizontal axes correspond to the real and 

imaginary parts of the complex plane, while the vertical axis shows the logarithm of the resolvent norm. The elevated 

peaks on the surface clearly mark the locations of the eigenvalues, making it easy to see how they are distributed and 

how sharply they are defined. 

CONCLUSIONS 
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The findings of the research indicate that advanced matrix-oriented analytical frameworks—particularly 

stratification and system canonization—provide an effective foundation for addressing the problem of selective pole 

manipulation in linear time-invariant systems. The study establishes that, as long as controllability requirements are 

met and the pole configuration is suitable, the target eigenvalues can be reassigned while leaving the remaining 

dynamic characteristics of the system unchanged. 

Furthermore, the paper demonstrates that the canonization procedure makes it possible to construct an entire class 

of controllers capable of enforcing the prescribed pole relocation. Importantly, these controllers retain internal 

parameter freedoms that do not affect eigenvalue placement. This structural flexibility allows for further refinement 

of the controller with respect to a broad range of performance metrics, including energy consumption, control-effort 

constraints, oscillation suppression, and others. 

Computational experiments carried out for a power-system model incorporating a synchronous generator and an 

automatic voltage regulator substantiate the theoretical results. Adjusting the dominant pole led to a measurable 

improvement in dynamic behavior and an increase in stability margins, all while preserving the structure of the 

remaining modal responses. Visualization of the pseudospectrum using the EigTool package revealed the 

displacement and clustering of eigenvalues under the influence of the synthesized controller. 

The outcomes of this work can be applied to the development of automatic excitation control systems, the design 

of optimal regulators for large-scale electric power grids, and the stability assessment of systems featuring distributed 

generation. The proposed methodology also offers a basis for future research, including potential extensions to 

nonlinear dynamics and stochastic models. 

 

REFERENCES 

1. P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994. 

2. R. E. Kalman, “Controllability of linear dynamical systems,” Contributions to Differential Equations, vol. 1, no. 2, 

pp. 189–213, 1963. 

3. B. C. Kuo, Automatic Control Systems. Englewood Cliffs, NJ: Prentice Hall, 1995, https://doi.org/10.1016/S0005-

1098(97)88640-2. 

4. F. R. Gantmacher, The Theory of Matrices, vol. I–II. Providence, RI: AMS Chelsea Publishing, 2000, 

https://doi.org/10.2307/3612823. 

5. T. G. Wright, “EigTool: A graphical tool for eigenvalue and pseudospectrum analysis,” Oxford University, 2002. 

[Online]. Available: https://www.comlab.ox.ac.uk/pseudospectra/eigtool/ 

6. P. M. Anderson and A. A. Fouad, Power System Control and Stability. IEEE Press, 2003. 

7. A. A. Fouad and V. Vittal, Power System Transient Stability Analysis Using the Transient Energy Function Method. 

Englewood Cliffs, NJ: Prentice-Hall, 1992. 

8. X. Wang, F. Blaabjerg and W. Wu, "Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-

Based Power System," in IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6421-6432, Dec. 2014, 

https://doi.org/10.1109/TPEL.2014.2306432. 

9. F. Milano, "A python-based software tool for power system analysis," 2013 IEEE Power & Energy Society General 

Meeting, Vancouver, BC, Canada, 2013, pp. 1-5, https://doi.org/10.1109/PESMG.2013.6672387. 

10. P. Kundur et al., "Definition and classification of power system stability IEEE/CIGRE joint task force on stability 

terms and definitions," in IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387-1401, Aug. 2004, 

https://doi.org/10.1109/TPWRS.2004.825981. 

11. Allaev K., Makhmudov T. Research of small oscillations of electrical power systems using the technology of 

embedding systems // Electrical Engineering. Germany, Berlin, 2020. – Vol. 102, №1. PP. 309-319, 

https://doi.org/10.1007/s00202-019-00876-9. 

12. S.-F. Chou, X. Wang, F. Blaabjerg, “Frequency-Domain Modal Analysis for Power-Electronic-Based Power 

Systems,” IEEE Transactions on Power Electronics, vol. 36, no. 5, 2021. https://doi.org/10.1109/TPEL.2020.3032736. 

13. Allaev K., Makhmudov T., Losev D. Analysis of Factors for Elaborate Forecasting Models of EPS Regime 

Parameters // Aip Conference Proceedings Open source preview, 2024, 3152(1), 040027. 

https://doi.org/10.1063/5.0218900. 

14. S. S. Kandala, S. Chakraborty, T. K. Uchida et al., “Hybrid method-of-receptances and optimization-based 

technique for pole placement in time-delayed systems,” International Journal of Dynamics and Control, 2020. 

https://doi.org/10.1007/s40435-019-00570-5. 

Auto-generated PDF by ReView V International Scientific and Technical Conference Actual Issues of Power Supply Systems

280MakhmudovICAIPSS2025.docxMainDocument AIPP Review Copy Only 6



15. E. Chu Optimization and pole assignment in control system design, International Journal of Applied Mathematics 

and Computer Science, vol. 11, no. 5, pp. 1035–1053, 2001,  

16. Makhmudov T. Influence of TCSC control systems on oscillations damping // AIP Conference Proceedings 2552, 

040009 (2023), https://doi.org/10.1063/5.0112238. 

17. Y. Zhan, X. Xie, H. Liu, H. Liu, Y. Li, “Frequency-Domain Modal Analysis of the Oscillatory Stability of Power 

Systems With High-Penetration Renewables,” IEEE Transactions on Sustainable Energy, 2019. 

https://doi.org/10.1109/TSTE.2019.2900348. 

18. Allaev K., Makhmudov T., Nurmatov O. Influence of Automatic Excitation Regulators on Modes of Hydropower 

Plants // Smart Innovation, Systems and Technologies, 2021, Vol. 232, p. 383–392, https://doi.org/10.1007/978-981-

16-2814-6_33. 

19. A. B. Iskakov, I. B. Yadykin, “Lyapunov modal analysis and participation factors applied to small-signal stability 

of power systems,” Automatica, vol. 132, 2021, Art. 109814. https://doi.org/10.1016/j.automatica.2021.109814. 

20. A. N. Andry, E. Y. Shapiro & J. C. Chung, “Eigenstructure assignment for linear systems”, IEEE Transactions on 

Aerospace and Electronic Systems, 19(5), 711–729, 1983. https://doi.org/10.1109/TAES.1983.309373. 

Auto-generated PDF by ReView V International Scientific and Technical Conference Actual Issues of Power Supply Systems

280MakhmudovICAIPSS2025.docxMainDocument AIPP Review Copy Only 7


