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Abstract. The article analyzes problems of detecting anomalies and predicting time series based on electricity
consumption data from smart meters. The study uses the Isolation Forest, XGBoost, and LSTM algorithms, and their
effectiveness in anomaly detection, energy consumption forecasting, and modeling dynamic relationships between
complex variables is evaluated based on comparative analysis. The obtained results show that the proposed approaches
allow for the timely detection of abnormal behavior in energy consumption, optimization of the power grid load, and
ensuring the efficient use of resources. As a result, the foundation will be laid for the formation of integrated energy
management systems, the stability of the power supply infrastructure will be strengthened, and energy efficiency will be
significantly increased.

INTRODUCTION

In recent years, the rapid development of digital technologies has created the basis for fundamental changes in
the management of energy networks, real-time monitoring of energy consumption, and increasing the efficiency of
resource use. In particular, smart meters are of particular importance as a modern system capable of collecting high-
precision and frequently updated data on electricity consumption. The sharp increase in the volume of data obtained
from these devices increases the need for automated methods aimed at in-depth analysis of energy consumption
patterns, identification of unusual behavior, and forecasting future trends [1-3].

Time series data from smart meters have a complex structure, incorporating seasonality, trend components, as
well as the influence of external factors such as temperature, humidity, and wind speed. Proper modeling of these
factors allows for a deeper understanding of the dynamic nature of energy consumption, reliable forecasting of
future consumption, as well as predicting possible loads in the electrical grid and periods when demand may
increase. At the same time, identifying anomalies associated with unusual consumption - excessively high or low
consumption, technical failures, incorrect calculations, or the likelihood of fraud - plays an important role in
ensuring the reliability and security of the system [4-17].

The relevance of this research lies in the analysis of data obtained from smart meters using modern artificial
intelligence technologies, the identification of seasonality, relationships, and structural features in them, as well as
the creation of effective models capable of finding unusual situations in energy consumption and reliably predicting
future consumption. In this process, the study of comprehensive data (EDA analysis), the analysis of correlation
relationships between variables, the formation of lag properties over time (feature engineering), and the comparison
of the results of various models form the methodological basis of the research [18-26].

This study was conducted on data consisting of 5000 records based on the "Smart Meter Electricity Consumption
Dataset" [27]. This collection includes electricity consumption indicators recorded at 30-minute time intervals,
weather parameters (temperature, humidity, wind speed), as well as average values calculated based on historical
consumption and anomaly labels. Such a broad and multifaceted data structure allows for comprehensive analysis by
performing extended EDA analysis, visual analysis of anomalies, feature engineering, and comparing the
effectiveness of various models (Isolation Forest, XGBoost, and LSTM).
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ADVANCED EDA ANALYSIS

At the initial stage of the study, we conducted an extended exploratory analysis (EDA) on the Smart Meter
Electricity Consumption Dataset. This dataset consists of 5,000 observations and 7 main columns, allowing us to
understand the dynamics of consumption over time. Table 1. The table view of the electricity consumption data set
of the Smart meter is presented.

Table 1. Table view of Smart Meter Electricity Consumption Dataset

- . Avg_Past
4 Timestamp Electricity_ | Temperat Humidity Wind_Sp _Consum Anomaly_L
Consumed ure eed . abel
ption
0 5825‘(;%10_01 0.457786 0.469524 0.396368 0.445441 | 0.692057 | Normal
1 (2)82;(;%10-01 0.351956 0.465545 0.451184 0.458729 | 0.539874 | Normal
2 3(1)2;(;%1601 0.482948 0.285415 0.408289 0.470360 | 0.614724 | Normal
3 3(1)2;(;%10_01 0.628838 0.482095 0.512308 0.576241 | 0.757044 | Normal
4 2024-01-01 0.335974 0.624741 0.672021 0.373004 | 0.673981 Normal
02:00:00
4995 (2)(1)2;(;%‘:)_14 0.366839 0.701004 0.362397 0.509174 | 0.490516 | Normal
4996 3(2)2616%‘314 0.493568 0.258212 0.677895 0.627889 | 0.535212 | Normal
4997 3(2)2;6%‘:)'14 0.893818 0.431739 0.688926 0.508038 | 0.681099 | Abnormal
4998 (2)22;(;%‘;14 0.509673 0.592927 0.366151 0.668218 | 0.710599 | Normal
4999 (2)(3)2;(;%‘:)_14 0.233656 0.612872 0.473481 0.268306 | 0.555286 | Normal

In the time series graph (Electricity Consumed - Timestamp), although electricity consumption in the period
from January to April 2024 remained generally stable, significant fluctuations in values showed high dispersion. The
daily or weekly seasonality curve is not observed on the graph, but high random fluctuations indicate that
consumption may be significantly dependent on external factors (temperature, humidity, and wind speed) (Figure 1).
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' T T
Jan Feb Mar Apr
2024

FIGURE 1. Graph of the time series of electricity consumption.

299 svazovy CAIPSS2025.docx MainDocument AIPP Review Copy On/y 3



Auto-generated PDF by ReView V International Scientific and Technical Conference Actual Issues of Power Supply Systems

Therefore, a special approach is necessary when choosing a time-stable forecasting model, and the creation of
additional characteristics (lag and seasonal characteristics) is important for increasing the stability of the models.

ABNORMALITY ANALYSIS

According to the results of this analysis, the number of normal cases was 4750 and anomalies - 250. Although
anomalies constitute 5% of the total data, such a share corresponds to the natural frequency of unusual consumption
cases in real energy systems and indicates the presence of the problem of class imbalance in model training. This
discrepancy necessitates the use of special strategies such as oversampling, threshold adjustment, or weighted loss
for models aimed at detecting anomalies.

The linear graph of time consumption showed that consumption indicators frequently change from the lowest
values to sharply high values, and the noise percentage of the signal is high. This means that the seasonal component
for this season is weak, and consumption changes mainly under the influence of external factors. These features
indicate that simple regression models may have a high risk of overfitting, and therefore increase the likelihood of
the dominance of in-depth learning models, such as LSTM.

Anomaly Visualization over Time
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FIGURE 2. Time anomaly trend.
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Below, using a graph of dispersion by temperature and consumption characteristics, we distinguish anomalous
states (Fig. 3).
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FIGURE 3. Visual classification of anomalies

Using pair plot analysis, we visually represent multidimensional relationships between energy consumption,
weather factors, and historical average consumption indicators, as well as the spatial location of anomalies (Fig. 4).
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As can be seen from the graphs, anomalies in most cases are located in the same distribution area as normal
points and do not form a clearly linear or distinct cluster. This indicates the complexity of detecting anomalies using
simple threshold or linear separation methods. Also, although a relatively more pronounced relationship is observed
between Avg Past Consumption and Electricity Consumed, there is no clear structural separation between weather
factors and consumption. These results confirm the expediency of multidimensional and nonlinear approaches to
detecting anomalies, in particular, such algorithms as Isolation Forest.

The results of the graphical analysis allow us to draw the following conclusions. Anomalies are mainly observed
at very low or very high values of electricity consumption, indicating that abnormal consumption patterns typically
manifest in extreme consumption ranges. At the same time, a direct and strong influence of the temperature factor
on the occurrence of the anomaly was not revealed, since the anomalous points are scattered across different
temperature ranges.

This means that anomalies are mainly caused not by one factor, but by a combination of several variables and
complex multifactorial conditions. The results of this multidimensional analysis serve as a methodological basis for
a deeper study of correlational relationships, assessment of seasonality, and formation of lag characteristics in time
at subsequent stages.

CORRELATION ANALYSIS

We form the results of this analysis based on the correlation matrix (thermal map) (Fig. 5). This matrix shows
that the relationship between Electricity Consumed and Avg Past Consumption is 0.32. This indicator means that
historical consumption is an important factor in the formation of future consumption, and there is an average
significant direct correlation. This result once again confirms the importance of lag properties in time series
modeling.
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FIGURE 4. Multidimensional relationships between average consumption indicators and spatial distribution of
anomalies.
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Correlation Heatmap

Timestamp 0.015 0.026 0.0049 -0.094 0.03

0.8
Electricity_Consumed - -0.0029

Temperature E -0.0058 -0.0032 -0.6

Humidity e R 0.0068
-0.4

‘Wind_Speed

-0.2
Avg_Past_Consumption SEEEES . ! 0.0068

[ALLEVEELER 003 00033  -0.023 -0.0057 . 0 0.0

Timestamp
Temperature
Humidity
‘Wind_Speed
ption
Anomaly_Label

Past_Consum,

Electricity_Consumed

Avg_|

FIGURE 5. The relationship between properties is a correlation matrix.

The correlation of weather-related variables (Temperature, Humidity, Wind Speed) with consumption is
practically zero (=0.00-0.03). This confirms that the main factor forming energy consumption in this dataset is not
the external environment, but internal consumption indicators and time components.

The Anomaly Label column also showed a very low correlation with all properties. This means that it is
impossible to identify anomalies using simple linear relationships, and more nonlinear approaches are needed for
their identification, in particular, Isolation Forest, deep learning models, or complex multidimensional analysis
methods.

In general, correlation analysis shows that simple statistical methods are insufficient in the process of detecting
anomalies, it is advisable to use advanced ML/DL models for the effective study of hidden structures in energy
consumption graphs.

ANALYSIS OF SEASONALITY

Daily and weekly seasonal graphs revealed even more deeply the temporal structure of consumption.

Daily seasonality (Hourly Avg Consumption): Electricity consumption fluctuates several times throughout the
day. In some hours (4-6 in the morning, in the evening) consumption is relatively high, which corresponds to the
usual energy loads in real life (Fig. 6).

Daily Seasonality (Hourly Avg Consumption)
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FIGURE 6. Daily seasonal electricity consumption.
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Weekly seasonality (Day of Week Avg): On the 4th day of the week (Thursday), consumption had the highest
average value. On the 2nd day (Tuesday), the lowest indicator was recorded. This shows that energy consumption
has differences between working days and weekends (Fig. 7).

Weekly Seasonality (Day of Week Avg)

0.3850 4

0.3825 4

0.3800 1

0.3775 4

0.3750 4

0.3725 4

0.3700 4

0.3675 4

0 1 2 3 a 5 6
dayofweek
FIGURE 7. Weekly seasonal electricity consumption.

AUTOCORRELATION AND LAG-PLOT ANALYSIS

The lag plots compiled for lag-1 and lag-48 showed a weak internal dependence of the data on time. In both
graphs, the points are concentrated around the center and do not form a definite diagonal or a specific figure (Fig. 8).
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FIGURE 8. Lag-plots compiled according to Lag-1 and Lag-48. a) The points are denser on the Lag 1 diagram,
b) Points are not tightly packed on the Lag 48 diagram.

This means that there is no stable trend or regular cyclical structure in the time series, and consumption values
are mainly characterized by random fluctuations. The absence of strong repetition in the Lag-48 period (24 hours)
also confirms the insufficiency of accurate daily seasonality in the data. Among these common features, the
Avg Past Consumption column stands out as the most important variable forming the time dependence.

Results of the autocorrelation function (Autocorrelation Function - ACF). In the ACF graph, no significant
autocorrelation was observed, except for the 0-lag, and in long lags, the correlation approaches almost zero (Fig. 9).
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FIGURE 9. Graph of the autocorrelation function.

This means that the process of energy consumption has a strong stochastic nature, and there are no strictly
repeating or periodic patterns. The obtained results show that models based on the study of long-term memory of
time series (for example, LSTM) show that the cases that can be dominant in this dataset are limited, and the internal
autocorrelation of the data is very low. However, models enriched with lag properties (such as XGBoost) can work
more effectively with signals of stochastic nature.

FEATURE ENGINEERING

In order to increase the accuracy of the model results, a number of additional features related to the time series
(feature engineering) were created:

Lag-1, Lag-48, Lag-96 - consumption values 30 minutes, 24 hours, and 48 hours ago, respectively;

Day and week characteristics (hour, dayofweek) - reflect the daily and weekly rhythms of consumption;

Moving average (Avg_Past_Consumption) - an indicator that mitigates short-term fluctuations and highlights the
overall trend.

The combination of these features gave priority to the use of the following models:

- significantly increases the prediction accuracy for the XGBoost model, the model effectively absorbs lag
signals;

- for the LSTM model, the time dependence is strengthened, and the ability to study sequential patterns is
improved;

- in the anomaly detection process, additional features help stabilize the signal, making it easier to identify
unusual points.

As a result, the feature engineering process creates a reliable foundation for subsequent modeling stages,
increasing the efficiency of various models.

BUILDING MODELS OF AI INTELLIGENCE

Isolation Forest model. This is one of the fastest and most effective ensemble models specializing in detecting
anomalies within multidimensional data. In this study, the model is trained with the following hyperparameters:

e n_estimators=200 - more trees increased the accuracy due to the complexity of the data;

e contamination=0.03 - close to the proportion of anomalies in the dataset (5%), but selected slightly lower for
model stability;

o the default value of max_samples helped reduce overfitting in large datasets.

The model was trained based on consumption, temperature, humidity, wind speed, and historical consumption
characteristics. When comparing the model results with actual values, the following indicators were obtained.
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Table 2. Results of comparing the values obtained by the model with the actual values

Indicator Normal Anomaly

Precision 0.96 0.53
Recall 0.99 0.32

F1-score 0.97 0.40

The model detected normal states very well (Recall=0.99) and did not fully cover anomalies, showing the
presence of difficulties in detecting anomalies (Recall=0.32). We can assume that this is due to the small number of
anomalies in the dataset (5%). Also, due to the dispersion of anomalies, the model became complicated.

In the graph below, we highlight the points classified by the model as "normal" (0) and "anomalous" (1) in the
space of consumer values (Fig. 10).

Isolation Forest — Feature Space Classification
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FIGURE 10. Feature Space Classification

The graph clearly shows what decisions the Isolation Forest model makes in the property space. Here, the blue
dots represent normal consumption states, and the red dots represent observations classified by the model as
anomalies.

The Confuzion Matrix graph shows how well the Isolation Forest model matches real labels. The matrix reflects
the following results (Fig. 11).

Isolation Forest Confusion Matrix
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FIGURE 11. Indicators of classification effectiveness of the model.
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The evaluation results show that the Isolation Forest distinguishes normal conditions very well, but cannot fully
cover them due to the fact that the anomalies are more complex.

Nevertheless, considering that the total accuracy of the Isolation Forest model is 95%, we can consider it an
effective approach that gives an initial signal about unusual situations in the system.

XGBOOST REGRESSION MODEL

The purpose of applying this model is to forecast electricity consumption for the next 30-minute interval (one-
step ahead forecasting). As input characteristics to the model, we choose external weather parameters (Temperature,
Humidity, Wind_Speed), historical average consumption (Avg_Past Consumption), and lag-characteristics (lagl,
lag48, lag96). We divide the data into train-set [:500] and test-set [500:] by time.

We configure the XGBoost with the following hyperparameters: n_estimators=300; learning_ rate=0.05;
max_depth=6; subsample=0.8; colsample bytree=0.8.

We trained the model based on historical data, obtained predictive values based on a set of tests, and calculated
the following evaluation metrics:

RMSE = 0.15838 and MAE = 0.12810

The graphs constructed for the XGBoost model accurately describe how the forecast results are formed over
time. In the graph viewed over the entire period of the test set, the forecast line of the model is located very close to
the actual consumption values, which indicates that XGBoost was able to successfully reproduce the overall
dynamics (Fig. 12).

XGBoost: Actual vs Predicted (Test set)
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FIGURE 12. Forecast results obtained using the XGBoost model
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Although the model cannot fully reflect sharp signal fluctuations, it maintains the general trend of energy
consumption in a smooth and stable form. This situation indicates the advantage of XGBoost as a noise-filtering
regression model in time series with high noise levels, such as electricity consumption.

The zoom, i.e., analysis of the first 200 points of the test set, more clearly demonstrated the model's reaction to
high-frequency oscillations (Fig. 13).

Zoom: first 200 points of test set
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FIGURE 13. The result of the analysis of the first 200 points of the test set.
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The graphs show that XGBoost operates with a small error in the low-to-medium consumption range, accurately
reproducing the main trend. However, during high-amplitude sharp changes (peaks), the model's prediction reacted
with a slight delay. This “lag effect” is a common phenomenon in the process of predicting time series with
gradient-based models, especially in energy systems where sharp oscillations have a stochastic nature.

It has been shown that the XGBoost algorithm can better study lag signals and demonstrates high stability in
short-term (one step ahead) forecasting.

PREDICTING THE TIME SERIES USING THE LSTM MODEL

Within the framework of the study, we use the LSTM model only for the Electricity Consumed column. We first
normalized the data in the interval [0.1] using MinMaxScaler; then converted it into a controlled learning format
(lag=48) over 48 30-minute intervals (24 hours) and divided the data into train/test sets with an 80/20 ratio.

We built the proposed model of in-depth learning based on the two-layer LSTM architecture. Using 128 neurons
in the first LSTM layer, we used the return_sequences=True parameter to fully preserve the time relationships in the
sequence. In the second LSTM layer, 64 neurons were located. Applying the Dropout (0.3) mechanism after both
LSTM layers, we reduced the model's tendency to overfitting.

Table 3. Results of reducing the model's tendency to overfitting

Layer type Output shape Number of parameters
LSTM (128 units) (None, 48, 128) 66 560
Dropout (0.3) (None, 48, 128) 0
LSTM (64 units) (None, 64) 49 408
Dropout (0.3) (None, 64) 0
Dense (ReLU, 16 units) (None, 16) 1 040
Dense (Output, 1 unit) (None, 1) 17
Total — 117 025

To enhance the model's ability to study high-level zero-linear relationships, we add a Dense (16) intermediate
layer with ReLU activation after the LSTM layers and finally use the Dense (1) output layer. The model was trained
for 30 epochs with the Adam optimizer and the elimination function of the root mean square error (MSE).

In the training process, the value of the training loss function remained stable in the range of ~0.026-0.028, and
the validation loss function - in the range of ~0.028-0.029. The small difference between training and validation
losses indicates that no serious overfitting cases were observed in the model. At the same time, the fact that the loss
values do not fall below a certain level is explained by the high noise and weak periodicity of the energy
consumption signal.

According to the test results, the RMSE value of the LSTM model was equal to =~ 0.162. This result showed that
the model could not adequately study deep time dependencies due to the absence of strong seasonality or
autocorrelation in the internal structure of the time series (Figures 14-15).

LSTM: Actual vs Predicted Electricity Consumption (Test set)
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FIGURE 14. Prediction graph obtained using the LSTM model
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FIGURE 15. The first 200 points of the test set.
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As a result, the LSTM model generated predictions in the test set, mainly around average values. This
phenomenon is described in the scientific literature as "mode collapse" or "mean predictor behavior" and is
frequently encountered in time-series signals that are highly noisy and do not have a clear structural diagram [28-
29].

Due to the fact that the model was trained on the basis of only one feature - electricity consumption, as well as
insufficient expression of stable and recurring seasonal patterns in the signal structure, the LSTM model could not
effectively reproduce sharp oscillations and local peaks [30-33]. At the same time, the RMSE of the LSTM model
was slightly higher than that of the XGBoost model, which showed that under the conditions of this dataset, the
classical gradient boosting approach gave a relatively more stable result in time series predictions.

To improve the obtained results, first of all, it is advisable to provide multidimensional input data to the LSTM
model. In particular, the introduction of additional characteristics, such as temperature, humidity, wind speed, and
historical average consumption, without limiting the consumption column, can help the model to study complex
relationships more deeply.

Also, optimizing the length of the lag window, deepening the model architecture (with drop-out and
regularization mechanisms), and using signal smoothing or denoising methods serve to reduce the “mean predictor”
effect.

This situation is explained by the weak expression of long-term and specific seasonal structures in energy
consumption data, as well as the predominant stochastic nature of the signal. Therefore, although the LSTM model
demonstrates limited efficiency for the dataset within this study, it is more suitable for use in large energy systems
with strong seasonality and complex time dependencies.

COMPARATIVE ANALYSIS OF THE RESEARCH RESULTS

The indicators of the comparative analysis of the results obtained on the basis of three different models
constructed within the framework of the study are summarized in Table 4.

The obtained results made it possible to comprehensively assess the capabilities of the models used in this study
in the analysis and forecasting of energy consumption.

The Isolation Forest model was able to distinguish normal consumption cases with high accuracy, however, due
to the small number of anomalies and their random distribution in the data space, the F1-score value was recorded
relatively low. Nevertheless, the model's light architecture and fast operation make it an optimal solution for use as a
preliminary warning mechanism in real-time monitoring systems.

Table 4. Indicators of comparative analysis of the research results

Model Type Function of the model Evaluation Criteria Result
Isolation Forest Detection of abnormality F1-score 0.40

XGBoost Prediction RMSE 0.1584

LSTM Deep learning time series prediction RMSE 0.1622

The XGBoost model showed the lowest RMSE value when enriched with time lag properties. This model was
distinguished by high stability in short-term energy consumption forecasting, quick learning, and ease of adaptation
of hyperparameters. The results confirm that XGBoost is the most effective and reliable approach for practical
forecasting tasks under these dataset conditions.
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The LSTM model, on the other hand, showed forecasts that were mainly smoothed around average values in this
dataset. This is explained by the fact that the energy consumption signal has high noise and low structural patterns,
and the model is trained based on only one feature - the value of consumption. As a result, the LSTM could not fully
recover the sharp oscillations, and its RMSE was slightly higher than the XGBoost model.

At the same time, the LSTM model can fully demonstrate its advantages when applied to time series with
pronounced long-term time dependencies and seasonal structures, low noise, and multiple characteristics. In this
dataset, the use of XGBoost for short-term forecasting tasks, Isolation Forest for anomaly detection, and LSTM in
cases of complex and deep time patterns is recommended as the most optimal approach.

CONCLUSION

In general, processing data from smart meters based on ML and DL methods significantly expands the
possibilities of early detection of abnormal energy consumption situations, effective management of the electrical
network load, rational use of resources, and optimization of energy management systems. The combined application
of the models tested in this study can serve to further improve the stability, security, and digital management
systems of the energy infrastructure.
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