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Abstract. This article examines the problem of detecting and predicting industrial equipment faults using IoT sensor
data through machine learning techniques. Sensor readings such as temperature, vibration, pressure, voltage, and current, as
well as FFT-based features, were statistically analyzed. Class imbalance and low signal informativeness were identified as
key factors limiting model accuracy. Results obtained from Logistic Regression, Random Forest, and XGBoost models were
comparatively evaluated, showing that when ROC-AUC values remain around 0.5, distinguishing fault and non-fault states
becomes challenging. Correlation and feature-importance analyses confirmed the absence of strong dominant indicators. The
findings highlight the need to improve sensor architecture and apply targeted feature engineering techniques. This study
demonstrates that in predictive maintenance, data quality is more critical than model complexity.

INTRODUCTION

In recent years, the issue of ensuring the reliability of equipment and reducing unscheduled downtime in
industrial production systems has become increasingly relevant. In particular, as a result of the implementation of
IoT (Internet of Things) technologies within the Industry 4.0 concept, it became possible to collect large volumes of
sensory data from production equipment in real time. Based on these data, monitoring the condition of the
equipment and preliminary identification of possible malfunctions is one of the main goals of the predictive
approach to maintenance [1-6].

Traditional maintenance methods are often based on specified time intervals or a reactive approach. Such
methods are considered limited in terms of economic efficiency, as they do not take into account the actual state of
equipment operation. Therefore, in recent research, methods of intelligent analysis based on sensory data, including
machine learning models and anomaly detection algorithms, are widely used [7-12].

Although in practice, many works offer models with high accuracy, research in the field of predicted
maintenance shows that model results often strongly depend on data quality, sensory signal informativeness, and
property engineering level. In particular, increasing the complexity of the model does not always give a reliable
result. This is especially noticeable in datasets with synthetic or poorly marked datasets [13-16].

In this study, the issue of detecting equipment malfunctions based on IoT sensor data is comprehensively
studied. The analysis utilizes indicators such as the sensor's readings in the time domain (temperature, vibration,
pressure, voltage, and current), FFT-based characteristics obtained in the frequency domain, normalized values, and
the anomalous score [17-20]. Classical (Logistic Regression) and ensemble (Random Forest, XGBoost-Extreme
Gradient Boosting) machine learning models are used, and their effectiveness is assessed systematically.

The main objective of the study is to determine which factors limit the effectiveness of predicted
maintenance models, rather than achieving high accuracy, including diagnosing model results. A comparative
analysis of the classification and approaches to detecting anomalies is also carried out using a separate experiment of
the "anomalous score" determination method.

The scientific significance of this work lies in the fact that it shows that even negative or low results in the
field of projected maintenance can be scientifically correctly interpreted. The obtained conclusions will serve as a
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methodological basis for further improvement of sensory design, derivation of target characteristics, and
development of models based on time series.

This study utilized "loT-Based Equipment Fault Prediction Dataset" [21]. Dataset includes real-time data
collected from industrial equipment through IoT sensors and is aimed at identifying and predicting equipment
malfunctions. Table 1 The data includes a total of 33,478 observations, each of which shows the state of equipment
operation at a certain time.

Table 1. The data includes a total of 33,478 observations, each of which is the operating state of the equipment at a certain time

# Timestamp Sens Temper Vibrati Pressur Voltage Curr FFT_F FFT_ | Normal Anomal | Fault_T
or_I ature on e ent eaturel Featu | ized_Te | y_Score | ype
D re2 mp
0 2015-01-01 S151 47.6982 34.2252 176.199 241.58777 8.323 | 0.22473 | 0.093 0.52422 | 0.23985 | NaN
00:00:00 52 92 516 1 269 7 4 6 6
1 2015-01-01 S192 67.2605 134.072 110.942 235.00316 11.07 | 0.97340 | 0.628 | 0.68277 | 0.77608 | NaN
00:01:00 49 771 636 5 2823 2 5 1 1
2 2015-01-01 S114 45.0567 70.5954 | 246.739 232.24432 10.35 | 0.56662 | 0.417 | 0.50281 0.03900 | NaN
00:02:00 22 5 554 4 3556 5 3 7 S
3 2015-01-01 S171 40.2606 98.2523 202.632 225.92251 10.22 | 0.87251 | 0.926 | 0.46394 | 0.58495 | NaN
00:03:00 70 85 051 7 8006 6 1 7 3
4 2015-01-01 S160 56.3119 138.959 | 231.149 198.92889 18.87 | 0.87638 | 0.174 | 0.59403 | 0.94496 | NaN
00:04:00 83 633 735 1 8552 0 5 7 1

3473 2015-01-24 S169 47.3353 63.1250 [ 229.575 207.61396 10.49 | 0.92254 | 0.532 | 0.52128 | 0.95098 | NaN

05:53:00 13 57 330 3 3408 0 1 4 2

33474 | 2015-01-24 S178 49.0094 52.2832 210.560 202.07593 11.90 | 0.38615 | 0.520 | 0.53485 0.58109 NaN
05:54:00 77 23 744 4 6123 8 3 3 3

33475 | 2015-01-24 S137 38.0488 57.7176 169.323 214.14593 8.991 0.04445 | 0.590 | 0.44602 | 0.23368 NaN
05:55:00 80 42 637 9 280 6 1 1 6

33476 | 2015-01-24 S138 70.6122 124.756 159.487 225.85421 7.344 | 0.00186 | 0.262 0.70993 0.19074 | NaN
05:56:00 23 468 059 5 537 0 7 5 1

33477 | 2015-01-24 S151 36.3489 70.5259 | 236.189 230.44780 8.292 | 0.02288 | 0.641 NaN NaN NaN
05:57:00 94 78 623 6 388 5 7

This dataset consists of 17 attributes, which include the timestamp and identifiers (Timestamp, Sensor ID), the
main physical indicators of the sensor, frequency range characteristics, normalized sensor values, and malfunction
indicators. Timestamp and Sensor ID attributes were not used as access properties in the modeling process, as they
served to describe the data source. The main sensory indicators were temperature, vibration, pressure, voltage, and
current parameters, which we considered sufficient for a comprehensive description of the thermal, mechanical, and
electrical state of the equipment.

According to the results of descriptive statistics, the temperature values are concentrated around 50 °C on
average, and the vibration and pressure parameters cover a wide range of approximately 100 Hz and 200 kPa,
respectively. Electrical parameters also reflect various load states, in some cases negative values indicate the
presence of sensory noise or abnormal measurements. To account for the dynamic characteristics of signals, we used
the FFT Featurel and FFT_Feature2 attributes obtained based on FFT, which briefly describe the latent periodic
changes in sensor signals.

Also, the dataset contains variants of all main sensory indicators, normalized within the range of 0-1, which
allows for the analysis of data in different units of measurement on the same scale. Anomaly Score and Binary
Fault_Status attributes are indicated as fault indicators, with approximately 30% of observations being faulty. This
indicates the presence of class imbalance and means that when evaluating the model, it is necessary to pay special
attention to such metrics as recall and Fl-score. Additionally, the Fault Type attribute is set only for some
observations and classifies malfunctions by type.

DATA ANALYSIS FOR RESEARCH PREPARATION

We perform this step to evaluate the overall structure of the dataset, distribute classes, and highlight sensory
properties related to full states. First, we analyze the distribution of classes according to the Fault Status property.

As can be seen from Figure 1, there is a significant class imbalance in the data set, approximately 70% of
observations are non-fault cases, and the remaining portion is non-fault cases. This situation is characteristic of
predictive maintenance tasks and indicates the need to apply special evaluation metrics at the next stage of
modeling.
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Let's depict the distribution of the main sensory indicators in the histogram in Figure 2. The values of
temperature, vibration, pressure, voltage, and current cover a wide range and are located approximately close to the
normal distribution. This indicates the presence of different operating modes and potential noise in the sensor data.

Class Distribution of Fault Status
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FIGURE 1. Class distribution of fault and non-fault samples in the dataset.
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FIGURE 2. Distribution of raw sensor features including temperature, vibration, pressure, voltage, and current.

To assess the difference in sensor values relative to the fault and non-fault states, we will conduct a boxplot
analysis (Figure 3). According to the results, there is no significant visual discrepancy between the two classes for
all the main sensory parameters, i.e., there is a large overlap between the values.
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FIGURE 3. Boxplot comparison of sensor feature distributions for fault and non-fault conditions.

The distribution of FFT Featurel and FFT_ Feature2 attributes related to the frequency domain is shown in
Figure 4. These characteristics are distributed almost equally between 0 and 1, which also indicates that they cannot
visually clearly distinguish faulty states.

FFT_Featurel Distribution FFT_Feature2 Distribution
17504 - I 17504 o _ _
M ﬂ:q_a:’—‘h—-:"::_:-::“==§—— T —H — T

1500 / \ 1500 Z \

1250 1250
< 1000 £ 1000
3 3
=] =}
L] Lw]

750 - 750

500 A 500

250 250 4

0 0
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FFT_Featurel FFT_Feature2

FIGURE 4. Distribution of FFT-based features (FFT_ Featurel and FFT Feature2).

We also analyze the dependence of anomalies detection on malfunctions (Figure 5). The Boxplot results
showed that the detection values of anomalies also do not have a large difference between normal and
malfunctioning states, that is, the concepts of anomaly and malfunction do not fully coincide.
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FIGURE 5. Comparison of anomaly score distributions for fault and non-fault samples.

Analysis of the correlation matrix between sensory, FFT, and abnormal characteristics shows that there are no
strong linear relationships between most characteristics. This means that the signals used to reliably detect
malfunctions are weak or scattered, and confirm the absence of clear dominant indicators in the dataset. Overall, the
data analysis results before the study show that the patterns separating the characteristics of malfunctions in the
dataset are limited, which provides a preliminary and logical explanation for the low discriminatory efficiency
observed in subsequent machine learning experiments.

METHODOLOGY OF SCIENTIFIC RESEARCH

In this study, the issue of detecting equipment malfunctions based on IoT sensor data was systematically studied
using CRISP-DM methodology. The research process included the stages of data preparation, property creation,
modeling, and evaluation of results. The main task was formulated as a binary classification using the Fault Status
attribute and analyzed according to the scripts for identifying malfunctions important in industrial practice. The data
were separated by verification and testing, which ensured the preservation of class distribution.

When evaluating the models, class disproportions were taken into account, with priority given to metrics such as
completeness, F1-score, and ROC-AUC, not limited to accuracy. In addition to traditional classification models, a
reframing approach based on analysis, highlighting essential characteristics, and assessing the anomaly was used,
and the factors influencing model effectiveness were studied from a diagnostic perspective. This approach allowed
for an objective assessment of the model's results in forecasting service tasks and the correct interpretation of their
limitations.

DATA PREPROCESSING

At this stage, we carry out the process of preliminary processing to improve the quality of information, eliminate
factors that negatively affect modeling, and preserve the distribution of classes. The missing values observed in
some attributes were analyzed, and the Fault Type attribute, which was not directly used in the binary classification
problem, was removed, and observations with a small number of missing values in the remaining numerical
characteristics were removed from the dataset.

Identifier attributes such as Timestamp and Sensor_ID, which do not directly reflect the state of the simulation
equipment, have been removed. As a result, the main sensory indicators, FFT-based characteristics, normalized
values, and anomaly assessments were retained as input characteristics. Taking into account the existing imbalance
in the distribution of classes according to the Fault Status feature, the data were separated by checking and testing in
the 80/20 ratio, which ensures the preservation of the class ratio in both sets.

We also separately considered the issue of scaling, as the sensor readings have different units of measurement.
For distant-sensitive models, standardization was applied, and existing normalized sensory values were evaluated in
comparative experiments with raw data. These preliminary processing solutions serve as a solid foundation for the
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objective analysis of model results in subsequent stages and the correct interpretation of their impact on highlighting
important characteristics in the data.

HIGHLIGHTING IMPORTANT CHARACTERISTICS IN DATA

At this stage, the highlighting of important data properties (feature engineering) was aimed at assessing the
informativeness of sensory data in the issue of fault detection. As input characteristics, the main sensory indicators
related to the time domain, characterizing the working state of the equipment - temperature, vibration, pressure,
voltage, and current values - were taken. During the experiments, the values obtained from the sensor and
unprocessed values and their normalized variants were used as model inputs in individual cases, and we conducted a
comparative assessment of the influence of time domain properties on the model's efficiency.

To account for the dynamic characteristics of signals, we used the FFT_Featurel and FFT_Feature2 attributes
obtained based on the FFT method. These characteristics briefly describe the latent periodic changes in sensory
signals and have theoretical significance for detecting mechanical malfunctions. In cases where FFT properties are
present and absent, individual models were constructed, and their additional value for the predicted service problem
was assessed through comparative experiments.

We also paid special attention to the normalization strategy, as the sensor readings have different units of
measurement. The normalized values of the sensors in the 0-1 range, present in the data, were applied
independently, and for remote sensing algorithms, the standardization method was used.

MACHINE LEARNING MODELS FOR DETECTING EQUIPMENT MALFUNCTIONS
BASED ON IOT SENSOR DATA

At this stage of our research, we use several machine learning models to study the problem of detecting
equipment malfunctions based on IoT sensor data. The selection of models was carried out taking into account that
the main goal of the research is not to achieve high accuracy, but to objectively assess the discriminatory ability of
existing sensory and derivative properties when identifying faulty states.

Therefore, in the study, we use both simple linear models and ensemble models based on decision trees, and
analyze their results from a comparative and diagnostic point of view under the same experimental conditions. This
approach allows us to determine the impact of input properties quality, rather than model complexity, on the
effectiveness of the projected service.

Logistic Regression Model. As a basic model, we use Logistic Regression. This model is based on the linear
solution boundary and allows for the assessment of the overall relationship between the sensor characteristics and
the fault state. The main advantage of Logistic Regression is its simplicity and ease of interpretation, therefore it is
widely used as a standard base model in forecasting service research [22].

Considering the presence of class imbalance in the dataset, we train logical regression models using the “class
weighing” method (class_weight="balanced”). This approach is aimed at increasing the significance of the fault
class and allows prioritizing the recall (finding failures without missing) and F1-score (accurate and correct
assessment) metrics over error (accuracy). According to the experimental results, although the model reached recall
=~ 0.51, the overall Fl-score remained at = 0.38 due to low accuracy. The ROC-AUC indicator is around 0.51,
indicating that the model's ability to distinguish between failed and failed states does not significantly exceed the
random prediction level. This shows that the analysis of the Confusion matrix (Fig. 6) shows that the logical
regression model is relatively sensitive to detecting malfunctions, but the number of false positive cases is higher.
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FIGURE 6. Confusion matrix of the Logistic Regression model with class balancing applied.

The ROC curve (Fig. 7) is located close to the diagonal, which once again confirms that the model's overall
discriminatory ability is limited.

Although class imbalance mitigation has improved the full recall indicator, the logical regression model has
limited discriminatory capability, indicating that the linear boundaries of the solution are insufficient to detect
patterns related to malfunctions in existing sensory data.

ROC Curve - Logistic Regression
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FIGURE 7. ROC curve of the Logistic Regression model, illustrating near-random discriminative
performance (AUC = 0.51).

Random Forest Model. As an ensemble model, we use the random forest algorithm. This model is capable of
modeling nonlinear relationships by aggregating the results of multiple decision trees and is theoretically suitable for
analyzing noise and multidimensional sensory data. The random forest model can form complex solution boundaries
compared to logical regression [23].

During the model training process, we select a limited number of trees, maximum depth, and minimum division
parameters, which is done to reduce the risk of overfitting. We also use class weight to account for class
disproportions present in the dataset. Based on the experimental results, although we achieved an accuracy of =0.60
using the Random Forest model, we showed recall values of ~0.25 and F1-score of ~0.27 to determine the fault
class. The ROC-AUC indicator is around 0.50, indicating that the model's ability to distinguish between failed and
failed states does not exceed the level of random prediction. Analysis of the Confusion matrix (Figure 8) shows that
the number of random forest models tends to favor the largest class, and the majority of failure cases remain “false
negative”.

3014vazovy CAIPSS2025.docx MainDocument AIPP Review Copy On/y 8



Auto-generated PDF by ReView V International Scientific and Technical Conference Actual Issues of Power Supply Systems

Confusion Matrix - Random Forest
5000
4500
Y 4000

3500

- 3000

True Label

- 2500
- 2257 745 [ 2000
- 1500
- 1000

' '
0 1

Predicted Label

FIGURE 8. Confusion matrix of the Random Forest model with class balancing applied.

The ROC curve practically coincides with the diagonal and once again confirms that the overall discriminatory
ability is limited, despite the use of the ensemble model (Figure 9).
ROC Curve - Random Forest
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FIGURE 10. ROC curve of the Random Forest model, showing near-random discriminative performance
(AUC = 0.50).

Despite the possibility of modeling improper relationships, the Random Forest ensemble model did not show
significant improvement in troubleshooting, indicating that the limitation is due not to the model's complexity, but to
the lack of sufficient informative characteristics.

XGBoost model. To determine whether the model's power limits the predicted service, we will also conduct an
assessment using a strong ensemble model based on gradient boosting - XGBoost. This model is known for its high
efficiency in working with tabular data and can form more complex and illegal boundaries of solutions than the
random forest model [24].

According to the experimental results, when we used the XGBoost model, the accuracy was = 0.54, feedback =
0.37, and Fl-score = 0.33. Compared to the Random Forest model, although the failure detection completeness
indicator improved somewhat, the ROC-AUC remained around 0.50. This indicates that the model's ability to
distinguish between faulty and faulty states does not significantly exceed the level of random forecasting. Analysis
of the Confusion matrix shows that the XGBoost model also tends to give relative preference to many classes: a
significant portion of malfunctions remain “false negative” (Fig. 10).
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FIGURE 10. Confusion matrix of the XGBoost model illustrating prediction errors for fault and non-fault classes.

The ROC curve almost coincides with the diagonal and once again confirms that the overall discriminatory
ability is limited, despite the use of an ensemble model with high expressiveness, such as gradient growth (Fig. 11).

ROC Curve - XGBoost
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FIGURE 11. ROC curve of the XGBoost model, demonstrating near-random discriminative
performance (AUC = 0.50).

Overall, these results indicate that even with the use of modern gradient amplification ensemble models, the
existing sensor does not contain sufficient discriminatory information for reliable fault separation based on FFT and
anomalously related characteristics. This once again confirms the main conclusion of the study - that the factor
limiting the effectiveness of forecasting services is not the complexity of the model, but the informativeness of the
characteristics.

COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS

All models were trained and evaluated on the same pre-prepared data set and under conditions of dividing into
the same training and testing set. This approach allows for direct and objective comparison of model results.
Hyperparameters were set to the minimum level, as the main goal of our research was not to achieve maximum
accuracy, but to determine to what extent existing sensory and derived characteristics can provide the task of
predicted maintenance.

Now let's present the obtained results systematically and analyze the advantages and limitations of each model
from a diagnostic point of view. Considering the presence of class imbalance in the data set, we evaluate the model's
effectiveness not only with accuracy but also based on completeness, accuracy, F1-score, and ROC-AUC metrics.
Table 2. The comparative effectiveness of machine learning models for troubleshooting is presented.
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Table 2. Comparative efficiency of machine learning models for troubleshooting.

Model Accuracy | Precision | Recall | F1-score | ROC-AUC
Logistic Regression 0.503 0.305 0.513 0.383 0.511
Random Forest 0.595 0.294 0.248 0.269 0.499
XGBoost 0.542 0.294 0.374 0.329 0.497

The results presented in the table demonstrate the comparative effectiveness of logical regression, random forest,
and XGBoost models in detecting malfunctions based on IoT sensor data. Although the logical regression model
showed the highest completeness (0.513) considering class imbalance, its overall discriminatory ability was limited
and remained within ROC-AUC = 0.511. This indicates that the model could not reliably distinguish faulty states
despite detecting relatively more.

Although ensemble models such as random forest and XGBoost showed relatively higher accuracy results, their
ROC-AUC indicators were formed within 0.5 and did not exceed the level of random prediction. In particular, the
low completeness in the random model of the forest means that the majority of malfunction cases remained
undetected. Although the XGBoost model showed some improvement in completeness, its overall discriminatory
capability also remained limited. Overall, the results of this table confirm once again that increasing model
complexity does not automatically improve the effectiveness of the predicted service, and the main limitation is
related to the informativeness of the input properties.

CONCLUSIONS

The results of this study clearly showed that when solving the tasks of predicted service based on IoT sensory
data, the decisive factor is the informativeness of the characteristics, and not the complexity of the model. Despite
the use of different levels of models such as logical regression, random forest, and XGBoost, in all cases, ROC-
AUC is around 0.5, indicating the absence of a strong discriminatory relationship between sensory data and
malfunctions.

The low completeness state, along with the high accuracy observed in the basic logical regression model,
confirms the accuracy paradox (paradox of accuracy), which is well-known in the field of forecasting services.
Although the ability to detect malfunctions improved somewhat after applying the class balance, the practically
unchanging ROC-AUC indicator opened up limited possibilities for the linear solution threshold. The fact that
ensemble models with high expressiveness, such as random wood and XGBoost, also did not show significant
advantages is explained by the lack of clear signals characteristic of the malfunction in the input characteristics,
rather than the insufficient model architecture. This conclusion is further confirmed by the analysis of important
features conducted based on a random forest model (Figure 12).

Top-15 Feature Importance (Random Forest)
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Figure 12. Top-15 Feature Importance Scores Estimated by the Random Forest Model.
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As can be seen from the figure, the anomalies, FFT-based characteristics, as well as the significance levels of
unprocessed and normalized sensory indicators are practically within the same range, and there is no clear indicator
of the dominant malfunction in the model solutions.

Even relatively more significant FFT Featurel and FFT Feature2 did not show significant advantages over
other sensor parameters. This situation indicates a lack of sufficient discriminatory information in the data set to
reliably identify failures and explains the main reason for the observed ROC-AUC = 0.5 for all models.

Although FFT-based characteristics are often considered important in the literature on predicted services, their
discriminatory power in this data set is limited. This may be due to the fact that the characteristics of FFT are
presented in a very simplified or generalized form. In real industrial scenarios, characteristics based on time-
evolutionary spectral energy, dominant frequencies, or phase changes tend to be more informative.

Also, the fact that the approach based on the detection of anomalous states did not exceed the level of random
prediction in the issue of detecting malfunctions showed that the concepts of anomaly and malfunction do not
always fully coincide. Overall, this study, based on empirical data, has shown that before selecting a model in the
field of forecasting services, it is necessary to pay special attention to the sensor design, data quality and saturation,
and the highlighting of target characteristics.
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