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Abstract. Iron–carbon alloys are among the key materials in the mechanical engineering industry. This article analyzes the 

effect of modifying malleable cast iron, a type of iron–carbon alloy, with varying amounts of nickel powder on its tensile 

strength. Specimens were melted in an induction furnace at 1560–1580 °C and cast into sand-clay molds. Modification was 

accomplished by introducing nickel into the molten alloy in a ladle at concentrations of 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% 

relative to the charge. Malleable cast iron was obtained from the resulting castings through heat treatment. Specimens were 

produced from the heat-treated castings according to the standard and subjected to tensile testing on a WDW-100E tensile 

testing machine. During the study, the specimens were tested under loads of up to 100 kN. Based on the research results, 

the authors drew conclusions about the effect of nickel on tensile strength. 

INTRODUCTION 

In the mechanical engineering industry, the role of iron-carbon alloys is invaluable. With the increasing use of 

various alloys in mechanical engineering, aircraft manufacturing, and other industries, scientists worldwide are 

conducting research aimed at improving their properties [1–5]. Scientists in many countries have conducted significant 

research into the development of effective technologies for improving the mechanical properties of ductile iron 

mechanical engineering parts [6–9]. 

Finnish scientists E. Pagounis et al. investigated the influence of matrix structure on the mechanical properties of 

a white cast iron composite produced by hot isostatic pressing [10]. A high-chromium white cast iron composite was 

tested to evaluate its wear resistance and toughness after the addition of increased amounts of reinforcing elements. 

Nine white cast iron composites containing 10 vol.% titanium carbide (TiC), as well as three alloys without a 

reinforcing phase, were manufactured using the standard hot isostatic pressing (HIP) process. Next, the composite 

specimens were subjected to nine different heat treatment regimes, while the unreinforced alloy specimens were 

subjected to three heat treatment regimes. 

A study by German scientists D. Franzen et al. [11] demonstrated that the silicon content in malleable cast iron 

can be partially replaced to improve impact energy characteristics and reduce the ductile-brittle transition temperature 

without degrading the static mechanical properties. Four series of castings were produced from SGI 500-14 alloy with 

varying silicon contents. The primary objective of the study was to increase impact toughness without reducing the 

static mechanical properties. During the study of the microstructure and static and dynamic properties of these alloys, 

the possibility of partially replacing silicon with molybdenum was assessed. Molybdenum was chosen due to its ability 

to stabilize ferrite and promote carbide formation. The study results showed that molybdenum promotes the formation 

of carbides in solidification zones, improves static mechanical properties, and reduces the ductile-brittle transition 

temperature from 60°C to 6°C, thereby increasing the material's toughness. 

The work of Turkish scientist Z. Özdemir [12] focused on the fabrication and characterization of a bimetallic cast 

composite part consisting of high-chromium cast iron and low-carbon cast steel. The composite was produced using 

gravity sand casting with the addition of an activator consisting of sodium and boron powders to prevent oxidation. 

Heat treatment increased the hardness and impact toughness of the bimetallic material, while the presence of eutectic 
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carbides Cr(Fe)₇C₃ in the high-chromium cast iron significantly improved its toughness. Carbon diffusion during 

annealing resulted in increased hardness and toughness, while shallow cryogenic treatment of both sides—high-

chromium cast iron and low-carbon cast steel—ensured a stable interface and a uniform microstructure. 

Despite the above studies, the mechanical properties of cast iron, particularly its tensile strength, remain a critical 

factor in the performance of cast parts. This paper examines the effect of nickel on the tensile strength of an iron-

carbon alloy and analyzes changes in this characteristic. 

MATERIALS  

The chemical composition of the casting is given in Table 1. In this case, the burn-off and pick-up losses of 

elements must also be taken into account in order to obtain the required cast iron composition: +10% for C, −12% for 

Si, and −20% for Mn. Modification was carried out with nickel in the range from 0.1 to 0.5%, and the samples had a 

rectangular shape (Fig. 1). Before pouring the molten white cast iron into the sand–clay mold [13–16], a mass fraction 

of Ni from 0.1% to 0.5% was added into the ladle at a temperature interval of 1550–1620 °C. This process lasted for 

one minute, after which the melt was poured into the mold (Fig. 2). 

 
a)       b) 

FIGURE 1. Casting samples: a) nickel-free sample, b) nickel-added sample. 

 

TABLE 1. Chemical composition of the casting sample. 

C Si Mn S Others 

2.49-2.57 1.29-1.42 0.43-0.49 0.129-0.14 0.5-1.0 

 

 
FIGURE 2. The process of pouring samples into sand-clay molds. 

 

The temperature was measured using a DT-9862 hand-held pyrometer, which is designed for non-contact 

measurement of the sample surface temperature from -50 °C to 2200 °C [17-19]. 
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RESEARCH AND RESULTS 

Using GOST 1215-79, tensile test specimens were prepared with a calculated specimen diameter of 8 mm and an 

overall length of 105 mm (Fig. 3) [20]. Tensile testing was performed on a WDW-100E machine with a maximum 

load of 100 kN (Fig. 4). Foil strain gauges with electrical resistance were used for the measurements. These gauges 

were calibrated for room temperature during testing. 

 

 
FIGURE 3. Tensile test specimen 

 

 
FIGURE 4. Tensile testing machine WDW-100E 

 

 After the specimens were securely clamped in the clamping device, the stretching process began with increasing 

load [21]. During the test, a uniform increase in load was observed, which reached 30 MPa [22,23]. Figure 5 shows 

the stress-strain curve for malleable cast iron modified with different nickel contents. 
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FIGURE 5. Stress-strain curve for cast iron with nickel 

CONCLUSIONS 

Based on the data obtained, it can be concluded that with an increase in nickel content from 0.1 to 0.5%, a steady 

increase in tensile strength and a moderate increase in yield strength are observed in malleable cast iron. Yield strength 

increases from 11 kgf/mm2 to 28-30 kgf/mm2, indicating a significant strengthening effect of nickel. Ductility changes 

slightly, remaining in the range of 0.3-0.4%. At a Ni content of 0.5%, maximum strengthening is achieved while 

maintaining the stress-strain curve shape characteristic of malleable cast iron. This indicates the full potential of nickel 

modification at this concentration. 
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