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Abstract. This article analyzes the thermal processes of three-phase and two-phase oil-immersed transformers and 

describes modern modeling methods. The main factors influencing transformer thermal dynamics are examined: load 

conditions, convective oil flow, magnetic core losses, and the thermal properties of insulating materials. In addition to 

analytical thermal calculations, the study utilized 3D modeling methods based on CFD (computational fluid dynamics). 

The results obtained will help improve the reliability of oil-immersed transformers and select the optimal cooling system. 

INTRODUCTION 

Three-phase oil-immersed transformers are one of the main components of power systems, and their reliability 

largely depends on the stability of the thermal regime [1]. The heat generated in the transformer is mainly caused by 

the following sources: 

- losses in the magnetic conductor, 

- I²R losses in the first and second coils, 

- additional losses due to excitation current, 

- insulation aging processes. 

In oil-cooled transformers, heat is dissipated primarily through natural or forced convection. Therefore, accurate 

heat transfer modeling is essential to ensure normal operating temperatures. 

THEORETICAL BASIS FOR HEAT TRANSFER CALCULATION 

Thermal analysis of oil-immersed transformers typically consists of two main steps: 

Waste identification 

The total losses in a transformer are expressed as follows: 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑖𝑟𝑜𝑛 + Р𝑤𝑖𝑛𝑑𝑖𝑛𝑔 + Р𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙                                                        (1) 

Here: 

𝑃𝑖𝑟𝑜𝑛- hysteresis and total current losses in the magnetic core, 

Р𝑤𝑖𝑛𝑑𝑖𝑛𝑔- losses of active resistance in coils, 

Р𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙- losses caused by surface currents and mechanical vibrations [2]. 

Heat balance equation.The change in temperature in a transformer is described by the following equation: 

С
𝑑𝑇

𝑑𝑡
= 𝑃𝑡𝑜𝑡𝑎𝑙 − ℎ𝐴(𝑇 − 𝑇𝑎𝑡𝑚)                                                                         (2) 
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Here: 

- C - annual capacity, 

- h is the coefficient of convective heat transfer, 

- A - heat exchange surface, 

- 𝑇𝑎𝑡𝑚- outside atmosphere air temperature [3]. 

By solving this equation, we can determine the surface temperature of the transformer oil (the temperature of the 

top layer of oil) and the maximum winding temperature (the temperature at the hottest point). 

MODELING METHODS 

Equivalent heat chain method. In equivalent thermal diagrams, transformer elements are represented by thermal 

resistances and heat capacities similar to those in electrical circuits [4]. This method is fast and suitable for engineering 

calculations, but has limited accuracy. One of the most effective methods for modeling the thermal behavior of three-

phase, two-pipe, oil-immersed transformers in grid-scale and realistic modes is the use of CFD (computational fluid 

dynamics) technologies. Using programs such as ANSYS Fluent, COMSOL Multiphysics, and OpenFOAM, natural 

oil convection, heat transfer processes, and temperature distribution in the coil and magnetic core are calculated in 3D 

[10-15]. 

Computational fluid dynamics (CFD) modeling. Computational fluid dynamics (CFD) programs (ANSYS 

Fluent, COMSOL, OpenFOAM, and others) allow 3D convection modeling in oil. CFD models are based on solving 

hydrodynamic and heat transfer processes using the Navier-Stokes equations. The Navier-Stokes equations are used 

in the modeling. Structurally, they are expressed as follows: 

Equation of conservation of momentum (Nave-Stokes): 

𝜌 (
𝜕𝑣

𝜕𝑡
+ (𝑣 ∙ ∇)𝑣) = −∇𝑝 + 𝜇∇2𝑣 + 𝑝𝑔                                                         (3) 

Here: 

ρ- oil density, 

And- velocity vector, 

p- pressure, 

μ- dynamic nut (viscosity), 

G- gravitational acceleration. 

As a result, the following parameters are determined: oil consumption, temperature of insulation and pipes, the 

hottest spots, heat transfer efficiency in radiators [5-10]. 

Energy equation: 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣 ∙ ∇𝑇) = 𝑘∇2𝑇 + 𝑄                                                               (4) 

Here: 

𝑐𝑝- heat capacity, 

To- thermal conductivity of oil, 

IN- heat generated due to losses in the coil and magnetic core. 

In CFD modeling, natural convection of oil is calculated based on the Boussines approximation, in which case the 

change in oil density depending on temperature is written as follows: 

𝜌 = 𝜌0[1 − 𝛽(𝑇 − 𝑇0)]                                                                  (5) 

where b is the coefficient of thermal expansion of the oil. 

Key parameters were determined using CFD modeling. The CFD model allows to determine the following 

operational and design parameters: 

1. Oil consumption. Natural convection flows in oil circuits, velocity in radiator tubes, and gradients along 

circulation paths are estimated. This information is crucial in pump less (ONAN) and pump less radiator (ONAF) 

modes [15-22] 

2. Temperature distribution in insulation and pipes. Computational fluid dynamics (CFD) results allow us to 

determine local temperatures in each insulation layer, particularly in hot spots. Temperatures in these areas determine 

the rate of insulation aging, so their accurate assessment is essential for compliance with technical standards. 

3. Location of the hot spot. Determining which part of the transformer structure heats up the fastest is important 

for design optimization, especially when changing the width and location of the oil channels. 



4. Heat transfer efficiency in radiators. The temperature difference in the radiator tubes, oil circulation rates, and 

heat transfer coefficients are calculated. CFD modeling is used to optimize the radiator design (number of tubes, 

length, and diameters). 

As noted in the literature [5], CFD modeling of oil-cooled transformers provides 15–20% higher accuracy in 

predicting actual operating temperatures than traditional equivalent circuits and significantly reduces the error in 

determining temperatures in overheated zones. 

 

RESEARCH RESULTS 

As a result of simulation using computational fluid dynamics, the following observations were made: 

Increased oil circulation due to load: 

In the load range of 80–100%, oil circulation increases and the temperature rise is reduced. This will undoubtedly 

increase the efficiency of the convection system, as the oil will facilitate more efficient heat distribution. 

Figure 1 presents the results obtained based on the modeling of the heat dissipation of a three-phase two-winding 

oil transformer in a Matlab script. 

 
FIGURE 1. Time-varying graphs of core and oil obtained from modeling the heat dissipation of a three-

phase, two-winding oil transformer 

 

Thermal gradient on the surface of radiators: 

Natural convection n and a high temperature gradient is observed on the radiator surfaces. This can lead to 

significant temperature differences between radiators, requiring modernization of heat dissipation systems. 

Optimization to reduce temperatures in hot spots: 

To reduce the temperature at the hottest point by 5–7 °C. It was found that optimizing the oil circulation channel 

geometry was effective. This, in my opinion, demonstrates that geometry can be improved using CFD modeling, 

which is essential for temperature control [22-28] 

Short-term strong load fluctuations: 

Short-term strong load fluctuations increases the risk of rapid aging of the insulation. This demonstrates the 

importance of a qualified engineering approach (material selection, system design) and the effective use of monitoring 

systems. 

 

 



CONCLUSION 

Correctly assessing the thermal conditions of three-phase, double-pipe oil-heated transformers is crucial for 

increasing their reliability and service life. Although equivalent thermal circuits are sufficient for engineering 

calculations, computational fluid dynamics (CFD) modeling is useful for obtaining accurate temperature distributions. 

The results obtained have practical implications for optimizing the design of oil-heated transformers and selecting an 

appropriate cooling system. 

CFD modeling plays an important role in the correct assessment of the required thermal conditions for transformers 

and in the optimization of the design. 

Despite some limitations, the use of equivalent thermal circuits in this case allows the use of CFD modeling, which 

offers new, more accurate and efficient solutions. 

CFD simulation results effective optimization of transformer design and its importance when selecting a cooling 

system. 

The obtained results demonstrate the importance of computational fluid dynamics (CFD) modeling in thermal 

management and design optimization. 
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