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Abstract. Nonlinear industrial processes dominated by delay and inertia are difficult to regulate because sharp gain 

variations near sensitive regions, mixing/measurement dead time, and stochastic disturbances jointly produce overshoot, 

slow settling, and aggressive actuation. This paper presents an inhibition-oriented, cognitively informed model-free 

adaptive predictive PI controller that uses only online input–output data while explicitly promoting energy-aware actuation. 

The method (i) applies compact-form dynamic linearization to obtain a local incremental data model with an online pseudo-

gradient estimate and multi-step prediction, (ii) incorporates a PI mechanism based on instantaneous tracking error and its 

accumulated sum – into the predictive optimization to suppress error build-up in delayed loops, and (iii) penalizes control 

increments to yield smoother inputs and lower actuator effort without compromising tracking speed. The controller is 

evaluated on a mechanistic nonlinear benchmark with a delay–inertia block (Figure 1–Figure 3) under set-point scheduling 

(Figure 5–Figure 6), delay-step changes (Figure 7), disturbance intensities (Figure 8; Table 3–Table 4), inertia variation 

(Figure 9; Table 5–Table 6), and tuning sensitivity (Figure 10–Figure 11). Relative to MFAC and conventional MFAPC 

baselines, it consistently reduces integrated and peak-error measures, achieving about 38–67% lower ISE, 20–48% lower 

IAE, and 40–50% lower maximum deviation across representative cases (Table 2–Table 6). The results suggest a robust, 

practically deployable route to high-performance regulation of delay- and inertia-dominated nonlinear processes with 

improved input economy. 

INTRODUCTION 

Nonlinear industrial plants dominated by transport/measurement delay and large inertia remain among the most 

difficult closed-loop regulation tasks. In chemical and environmental units, the input–output gain is highly 

nonuniform: wide regions respond weakly, while a narrow neighborhood becomes extremely sensitive, as reflected 

by a titration-type nonlinear characteristic (Figure 1) and the flow–mixing–reaction–measurement structure (Figure 

2). When these nonlinearities combine with dead time and inertial dynamics (Figure 3), set-point changes and 

stochastic disturbances frequently produce overshoot, oscillations, and long settling times. Beyond tracking, plants 

increasingly require actuation economy because aggressive or oscillatory inputs increase energy use and accelerate 

wear, which is especially important in water and wastewater systems [1–2]. Although PID control is widespread, a 

single tuning rarely covers all operating regions in strongly nonlinear dead-time processes, making retuning or gain 

scheduling necessary [3–5]. Nonlinear MPC can systematically handle constraints and improve performance via 

prediction when an accurate, maintained model is available, yet modeling and continual updates are costly, and time-

varying delay, unmodeled dynamics, and regime changes can erode robustness [6–7]. Intelligent methods (fuzzy, 

neuro-fuzzy, learning-based) reduce dependence on first-principles models and approximate nonlinear mappings [8], 

but stability/robustness under delay, inertia, and disturbances remains challenging [9]. Other nonlinear internal-model-

based and evolutionary/GA-based designs can be effective in pH-type benchmarks, but often require strong 

assumptions or substantial tuning and add complexity, without always directly mitigating delay-driven error 

accumulation [10–13]. 
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Figure 1. Nonlinear static characteristic with a high-gain jump near the nominal point. 

 

Interest in data-driven, model-free adaptive control is increasing because it preserves adaptability without explicit 

mechanistic identification. Dynamic linearization provides a local incremental data model with an online pseudo-

gradient inferred from input–output measurements [14–16]. Yet, when dead time dominates, delayed feedback can 

still produce overshoot and oscillatory inputs. Model-free adaptive predictive control introduces multi-step prediction 

and a tracking–effort compromise [17], but many schemes do not explicitly inhibit inter-sample error accumulation, 

which becomes decisive under large delay and inertia and can drive overly aggressive, energy-intensive actuation—

particularly in variable pH regulation [18–19]. To address this gap, the paper proposes an inhibition-oriented, 

cognitively informed model-free adaptive predictive PI framework. It keeps dynamic linearization with online pseudo-

gradient estimation, predicts the pseudo-gradient over the horizon via a recursive predictor [20], regulates both 

instantaneous and accumulated error through predictive PI action to suppress error build-up, and penalizes input 

increments to promote smooth, energy-aware actuation (Figure 4). Validation uses a mechanistic nonlinear benchmark 

with a delay–inertia block (Figure 1–Figure 3) and evaluates set-point tracking, delay/inertia sensitivity, disturbance 

robustness, and tuning effects (Figure 5–Figure 11; Table 2–Table 6). 

EXPERIMENTAL RESEARCH 

Experimental verification employs a reproducible nonlinear benchmark that captures industrial loops dominated 

by dead time and large inertia. It preserves a steep static gain variation, slow mixing/transport dynamics, and an 

explicit delay – features that commonly cause overshoot and oscillations under conventional regulation. The reactor 

interpretation follows Figure 2, the nonlinear sensitivity is shown in Figure 1, and the delay–inertia block matches 

Figure 3. 

(a) Equivalent-state dynamics: To avoid numerical stiffness, the process is described by an equivalent surplus 

state 𝑠(𝑡)(mol/L-equivalent), where 𝑠(𝑡) > 0indicates acid dominance and 𝑠(𝑡) < 0base dominance. For volume 𝑉, 

constant acid flow 𝑞𝑎, manipulated base flow 𝑞𝑏(𝑡), and inlet concentrations 𝑐𝑎 , 𝑐𝑏, the well-mixed balance is 

𝑉
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑞𝑎(𝑐𝑎 − 𝑠(𝑡)) − 𝑞𝑏(𝑡)(𝑐𝑏 + 𝑠(𝑡)).   (1) 

(b) Nonlinear measurement transformation: The measured output is obtained through a nonlinear map derived 

from electroneutrality and water autoprotolysis. Denoting the water ion-product constant by 𝐾𝑤, the acidity index 

𝑦(𝑡)is computed from 𝑠(𝑡)by 

𝑦(𝑡) = log⁡10 (
−𝑠(𝑡)+√𝑠2(𝑡)+4𝐾𝑤

2𝐾𝑤
) .     (2) 

This transformation generates the steep gain transition that motivates the inhibition objective, consistent with the 

sensitivity pattern in Figure 1. 

(c) Discrete-time plant for controller evaluation: The benchmark is simulated under digital control with 

sampling period 𝑇𝑠. A forward discretization of (1) yields 

𝑠𝑘+1 = 𝑠𝑘 +
𝑇𝑠

𝑉
[𝑞𝑎(𝑐𝑎 − 𝑠𝑘) − 𝑞𝑏,𝑘(𝑐𝑏 + 𝑠𝑘)] + 𝜀𝑘,   (3) 

where 𝑠𝑘 = 𝑠(𝑘𝑇𝑠), 𝑞𝑏,𝑘 = 𝑞𝑏(𝑘𝑇𝑠), and 𝜀𝑘is an additive disturbance term capturing unmodeled effects and stochastic 

variability (its intensity is varied in later experiments). The discrete measured output follows 
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Figure 2. Stirred-tank mixing benchmark schematic with two inlets, buffering, and disturbance injection. 

 

(d) Dead-time and inertia shaping of the manipulated channel: To reflect the fact that the control command 

affects the reactor only after transport, mixing, and measurement delays, an inertia–delay shaping block is introduced 

in the manipulated channel, consistent with Figure 3. 

 

Neutralization 

Reactor 

Dynamics

pH Mapping
x(k) u(k) y(k)

pH(k)

Neutralization Reactor: Dynamics and 

pH Mapping

Actuator 

Dynamics

Transport 

Delay

d1(k): 

Feed concentration variation (Cin)

d
2 (k

): In
let flo

w
 

d
istu

rb
an

ce (q
in )

d3(k): 

Temperature effect T(k)

 
Figure 3. Delay–inertia nonlinear benchmark: input dynamics, process core, and static output mapping. 

Let 𝑢𝑘be the controller command and 𝑢̄𝑘the delayed/inertial plant input. With delay 𝑑and time constant 𝜏, 

𝑢̄𝑘 = 𝜌 𝑢̄𝑘−1 + (1 − 𝜌) 𝑢𝑘−𝑑 , 𝜌 = exp⁡(−𝑇𝑠/𝜏).    (5) 

In simulations, 𝑞𝑏,𝑘 ← 𝑢̄𝑘. Experiments use nominal settings (Table 1) and a one-factor-at-a-time protocol: vary 

only one factor (set-point, delay, noise, inertia, or tuning) while keeping others fixed. 

All experiments are executed in discrete time with sampling period 𝑇𝑠. The simulation plant is driven by the 

incremental state update 

𝑠𝑘+1 = 𝑠𝑘 +
𝑇𝑠

𝑉
[𝑞𝑎(𝑐𝑎 − 𝑠𝑘) − 𝑞𝑏,𝑘(𝑐𝑏 + 𝑠𝑘)] + 𝜀𝑘,   (6) 

and the measured output is computed via the nonlinear transformation 



𝑦𝑘 = log⁡10 (
−𝑠𝑘+√𝑠𝑘

2+4𝐾𝑤

2𝐾𝑤
) .    (7) 

Table 1. Initial parameter settings of the benchmark model 

Parameter Symbol Value Unit 

Inlet acid concentration (ca) 0.004 mol/L 

Inlet alkali concentration (cb) 0.001 mol/L 

Reactor (container) volume (V) 20 L 

Acid flow rate (constant) (qa) 0.25 L/min 

Sampling time (Ts) 1 min 

 

 
Figure 5. Moderate set-point tracking: MFAC, MFAPC, and inhibition-oriented predictive PI (reference band). 

To represent transport/mixing and measurement effects, the manipulated input is filtered by an inertia–delay 

shaper. With controller command 𝑢𝑘and effective plant input 𝑢̄𝑘, dead time 𝑑and time constant 𝜏, 

𝑢̄𝑘 = 𝜌 𝑢̄𝑘−1 + (1 − 𝜌) 𝑢𝑘−𝑑 , 𝜌 = exp⁡ (−
𝑇𝑠

𝜏
) ,   (8) 

The plant in (6) is driven by 𝑞𝑏,𝑘 ← 𝑢̄𝑘. States are initialized in a normal operating band to avoid artificial transients. 

A piecewise-constant reference 𝑦𝑘
refis applied using two schedules: intermediate-band (Figure 5) and wide-range 

across sensitivity regimes (Figure 6), with dwell times sufficient to expose transient and steady-state behavior. 



 
Figure 6. Wide-range pH step tracking (SV): MFAC, MFAPC, and IMFAPC. 

The tracking error is defined as 

𝑒𝑘 = 𝑦𝑘
ref − 𝑦𝑘 ,      (9) 

and the accumulated error used by the PI inhibition module is computed recursively as 

𝜉𝑘 = 𝜉𝑘−1 + 𝑇𝑠 𝑒𝑘, 𝜉0 = 0.    (10) 

Performance is quantified using three complementary indices that capture accuracy, robustness, and worst-case 

deviation over a finite horizon 𝑘 = 0,… , 𝐾𝑓: 

ISE = ∑ 𝑒𝑘
2𝐾𝑓

𝑘=0
 𝑇𝑠, IAE = ∑ ∣

𝐾𝑓
𝑘=0 𝑒𝑘 ∣  𝑇𝑠, MaxDev = max⁡

0≤𝑘≤𝐾𝑓
∣ 𝑒𝑘 ∣.   (11) 

These criteria are used consistently across all scenarios and form the basis of the quantitative comparisons 

summarized later in Table 2–Table 6. 

 
Figure 7. When the lag steps are 3 and 5, respectively. 



 
Figure 8. pH tracking for 𝑇𝑃 = 40min, 𝑑 = 1, 𝜙(0) = 2: effect of 𝜔𝑘(0.05 vs 0.5) on MFAC/MFAPC/IMFAPC; 

lower panels zoom steady state. 

Five experiment groups are conducted. (1) Baseline comparison under two set-point schedules benchmarks the 

proposed controller against two model-free baselines (Figure 5–Figure 6; Table 2). (2) Dead-time sensitivity varies 

the delay steps 𝑑in (5) (Figure 7). (3) Disturbance robustness adds zero-mean white noise 𝜀𝑘in (3) at two intensities 

(Figure 8; Table 3–Table 4). (4) Inertia dominance varies 𝜏in (5) (Figure 9; Table 5–Table 6). (5) Tuning sensitivity 

sweeps predictive weights and pseudo-gradient initialization (Figure 10–Figure 11). All methods use the same 

discrete-time plant and the same inertia–delay input shaping (3)–(5), so differences reflect control laws only. 

Controllers compared: MFAC-type, MFAPC-type, and the proposed inhibition-oriented predictive PI. 

 
Figure 9a. Responses for 𝑇𝑃 = 50and 100 min with 𝜙(0) = 2and 𝑑 = 1. 



The common modelling backbone for all data-driven methods is an incremental input–output representation built 

around the measured signal 𝑦𝑘 . The increments are defined as 

Δ𝑦𝑘 = 𝑦𝑘 − 𝑦𝑘−1, Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1.   (12) 

 
Figure 9b. System response when the inertia time of the system, TP is 50, 100 min, φ(0) = 2, d = 1. 

Using compact-format dynamic linearization, the local incremental behavior along the operating trajectory is 

approximated by 

Δ𝑦𝑘+1 ≈ 𝜅𝑘  Δ𝑢𝑘,     (13) 

where 𝜅𝑘is an unknown, time-varying pseudo-sensitivity that captures the local gain of the nonlinear plant. Since 𝜅𝑘is 

not available a priori and varies with operating conditions, it is estimated online directly from input–output data via a 

normalized adaptation law: 

𝜅̂𝑘 = 𝜅̂𝑘−1 + 𝛾 
Δ𝑢𝑘−1

𝜎+Δ𝑢𝑘−1
2 (Δ𝑦𝑘 − 𝜅̂𝑘−1Δ𝑢𝑘−1), 𝛾 ∈ (0,1].  (14) 

regularizes the update, preventing numerical degeneration when Δ𝑢𝑘−1is small and improving noise robustness. A 

safeguard resets the estimate to a positive initial value 𝜅̂initwhenever ∣ Δ𝑢𝑘−1 ∣ drops below a small threshold or ∣ 𝜅̂𝑘 ∣ 
becomes unrealistically small. For predictive schemes, future pseudo-sensitivities are obtained via a short 

autoregressive predictor fitted to recent 𝜅̂ estimates. 

𝜅̂𝑘+𝑗 =∑ 𝑎𝑖,𝑘
𝑝

𝑖=1
 𝜅̂𝑘+𝑗−𝑖 , 𝑗 = 1, … , 𝑁𝑐 − 1,    (15) 

where 𝑝is a small model order and 𝑎𝑖,𝑘are time-varying predictor coefficients updated online via a regularized 

recursion. This yields horizon-dependent prediction matrices purely from data, without mechanistic modeling. Within 

this framework, the MFAC-type baseline updates the input using the instantaneous tracking error 𝑒𝑘in (9) and the 

current pseudo-sensitivity estimate, written in normalized form to prevent overly aggressive actuation when the 

estimated gain is small: 

𝑢𝑘 = 𝑢𝑘−1 + 𝛽𝑘 
𝜅̂𝑘

𝜆0+𝜅̂𝑘
2  𝑒𝑘,    (16) 

where 𝛽𝑘 > 0is a gain factor and 𝜆0 > 0is a regularization term that limits input excursions and improves stability in 

highly nonlinear regions. Over the control horizon, the future control increment vector is defined as Δ𝑈𝑘 =
[Δ𝑢𝑘, … , Δ𝑢𝑘+𝑁𝑐−1]

⊤, and the control sequence is determined by minimizing a quadratic criterion that trades off 

predicted tracking performance against input activity: 

𝐽pred =∑ (
𝑁𝑝

𝑖=1
𝑦̂𝑘+𝑖 − 𝑦𝑘+𝑖

ref )2 + 𝜆∑ Δ
𝑁𝑐−1
𝑗=0 𝑢𝑘+𝑗

2 , 𝜆 > 0,   (17) 

where 𝑁𝑝denotes the prediction horizon and 𝑁𝑐denotes the control horizon. The penalty 𝜆 is used to shape input 

smoothness and thus influence actuation economy. 



 
Figure 10. The control effect of IMFAPC under different λ. 

The proposed inhibition-oriented predictive PI controller modifies the predictive objective by explicitly regulating 

the evolution of a PI-type error state, thereby suppressing error build-up that is exacerbated by dead time. Using the 

instantaneous error 𝑒𝑘(6) and the accumulated error 𝜉𝑘(7), the PI state is defined as 

𝑤𝑘 = [
𝜉𝑘
𝑒𝑘
] .      (18) 

Under the incremental data model (10), the one-step evolution of this state can be expressed in a compact linear 

form: 

𝑤𝑘+1 = 𝐴 𝑤𝑘 + 𝐵𝑘  Δ𝑢𝑘 + 𝐶 Δ𝑦𝑘+1
ref ,    (19) 

Where, 

𝐴 = [
1 𝑇𝑠
0 1

] , 𝐵𝑘 = [
0

−𝜅̂𝑘
] , 𝐶 = [

0
1
] , Δ𝑦𝑘+1

ref = 𝑦𝑘+1
ref − 𝑦𝑘

ref.   (20) 

By propagating (16) over the control horizon and using the predicted pseudo-sensitivities from (12) to form the 

sequence 𝐵𝑘+1, … , 𝐵𝑘+𝑁𝑐−1, a stacked prediction relationship is constructed: 

𝑊𝑘 = 𝒢 𝑤𝑘 + ℱ𝑘  Δ𝑈𝑘 +ℋ Δ𝑌𝑘
ref,     (21) 

with 𝑊𝑘 = [𝑤𝑘+1∣𝑘
⊤ , … , 𝑤𝑘+𝑁𝑐∣𝑘

⊤ ]⊤and Δ𝑌𝑘
ref = [Δ𝑦𝑘+1

ref , … , Δ𝑦𝑘+𝑁𝑐
ref ]⊤. The control sequence is obtained by minimizing 

𝐽PIpred =
1

2
𝑊𝑘

⊤𝑊𝑘 +
𝜆

2
Δ𝑈𝑘

⊤Δ𝑈𝑘 ,     (22) 

which yields the closed-form optimizer 

Δ𝑈𝑘
⋆ = −(ℱ𝑘

⊤ℱ𝑘 + 𝜆𝐼)−1ℱ𝑘
⊤(𝒢 𝑤𝑘 +ℋ Δ𝑌𝑘

ref).    (23) 

A receding-horizon strategy applies only the first move Δ𝑢𝑘
⋆ , updating 

𝑢𝑘 = 𝑢𝑘−1 + Δ𝑢𝑘
⋆ .     (24) 

This makes inhibition explicit by shaping the predicted (𝜉𝑘
𝑚, 𝑒𝑘)dynamics, not only the output, while 𝜆limits the 

size/variation of Δ𝑢𝑘to promote smooth, energy-aware actuation. Parameters (adaptation, regularization, horizons, 𝜆) 

are fixed within each scenario (nominals in Table 1); tuning studies vary 𝜆and 𝜅̂init(Figure 10–Figure 11), while other 

scenarios test delay steps (Figure 7), disturbances (Figure 8; Table 3–Table 4), and inertia changes (Figure 9; Table 5–

Table 6). 
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Figure 11. Closed-loop architecture of the inhibition-oriented model-free adaptive predictive PI controller. 

All simulations use the same digital control loop. At each sample 𝑘, 𝑢𝑘 is computed from current 

measurements/reference, shaped by the delay–inertia block (8) to 𝑢̄𝑘, applied to the plant (3), and mapped to the 

measured output 𝑦𝑘via (7) over 𝑘 = 0,… , 𝐾𝑓; indices are computed consistently. To ensure fairness and avoid 

numerical issues in sensitive regions, identical constraints are imposed for all controllers: input saturation: 

𝑢𝑘
sat = min⁡(𝑢max, max⁡(𝑢min, 𝑢𝑘)),    (25) 

and increment (rate) saturation: 

Δ𝑢𝑘
sat = min⁡(Δ𝑢max, max⁡(Δ𝑢min, Δ𝑢𝑘)), 𝑢𝑘

sat = 𝑢𝑘−1
sat + Δ𝑢𝑘

sat.  (26) 

Disturbances enter via 𝜀𝑘in (3); robustness tests use  

𝜀𝑘 ∼ 𝒩(0, 𝜎𝜀
2) 𝜀𝑘 ∼ 𝒩(0, 𝜎𝜀

2),      (27) 

with 𝜎𝜀
2 set per Figure 8 and Table 3–Table 4. The same random seed is used across controllers within each scenario 

to apply identical disturbance realizations. 

 

 
Figure 12. The rest of the conditions are the same as the simulations of IMFAPC with different φ. 

Sensitivity analysis sweeps key parameters. The predictive weight 𝜆 in (14) and (19) is varied to reveal the 

aggressiveness–overshoot trade-off (Figure 10), while 𝜅̂init and the regularization terms in (11) are varied to assess 



pseudo-sensitivity convergence and closed-loop robustness under different initial gain assumptions (Figure 11). For 

each setting, the same reference 𝑦𝑘
ref is applied, and 𝑒𝑘 and 𝜉𝑘 are computed consistently via (6)–(7) (and the PI-state 

recursion) across runs. Results are reported as time trajectories (Figure 5–Figure 9) to judge 

overshoot/settling/oscillations and as scalar indices (8) in Table 2–Table 6 to rank controllers by integrated deviation, 

error accumulation, and worst-case deviation, ensuring transparent and reproducible evaluation aligned with 

robustness and energy-aware actuation. 

RESEARCH RESULTS 

MFAC, MFAPC, and the proposed inhibition-oriented predictive PI controller are compared under scheduled 

set-point changes with nominal delay–inertia and baseline disturbance (Table 1) on the same plant (3)–(5) using (8). 

In Figure 5, the proposed method reaches set-points faster with much less overshoot; MFAC shows the largest delay-

driven transients, and MFAPC improves but retains residual overshoot and oscillatory tails in the sensitive region. By 

regulating the predicted error state 𝑤𝑘 = [𝜉𝑘 , 𝑒𝑘]
⊤(15)–(17), it achieves the lowest ISE, IAE, and MaxDev (Table 2). 

In Figure 6, as the operating range widens, MFAC/MFAPC degrade under nonlinear gain variation, while the proposed 

controller maintains stable tracking with a tighter response envelope via online pseudo-sensitivity prediction and PI-

state inhibition. 

Table 2. Dynamic performance comparison (baseline step-tracking scenarios) 

Controller ISE IAE MaxDev 

MFAC 0.160 0.301 1.954 

MFAPC 0.114 0.246 1.698 

Proposed (IMFAPC) 0.071 0.192 1.013 

 

Figure 5–Figure 6 and Table 2 show that the inhibition-oriented predictive PI controller achieves the best set-

point tracking on the nonlinear delay–inertia plant, improving accuracy and reducing overshoot versus MFAC and 

MFAPC. Robustness tests on the same setup (3)–(5), (8) indicate that increasing delay steps 𝑑degrades all responses 

(Figure 7), with MFAC worsening most due to delay-driven correction build-up and MFAPC retaining oscillatory tails 

without explicit error-inhibition. The proposed method stays tighter by forecasting and penalizing 𝑤𝑘 = [𝜉𝑘 , 𝑒𝑘]
⊤ 

(16)–(20), limiting 𝜉𝑘 growth and suppressing over-corrections. With stronger white-noise 𝜀𝑘 in (3), fluctuations 

increase (Figure 8) but the proposed controller degrades least because PI-state prediction smooths actions; Table 3–

Table 4 confirm the lowest ISE/IAE and smallest MaxDev. The third group then analyzes increased inertia and tuning 

trade-offs among speed, overshoot suppression, robustness, and input economy. 

Table 3. Dynamic performance comparison at disturbance level 𝜔𝑘 = 0.05 

Controller ISE IAE MaxDev 

MFAC 0.096 0.196 1.904 

MFAPC 0.068 0.159 1.608 

Proposed (IMFAPC) 0.042 0.127 1.009 

Table 4. Dynamic performance comparison at disturbance level 𝜔𝑘 = 0.5 

Controller ISE IAE MaxDev 

MFAC 0.260 0.340 2.022 

MFAPC 0.203 0.350 1.848 

Proposed (IMFAPC) 0.120 0.265 1.019 

 



Inertia dominance is evaluated by increasing the time constant 𝜏in the input shaping (5) while keeping 𝑑 and 

other parameters fixed. As shown in Figure 9, larger 𝜏 makes the loop more sluggish, increasing overshoot and 

recovery time when controllers compensate for slow response. MFAC exhibits the largest overshoot because error-

driven corrections accumulate before the inertial element delivers the command to the plant. MFAPC reduces 

overshoot but retains residual deviation and slower damping. The proposed inhibition-oriented predictive PI controller 

achieves the lowest overshoot and a more monotone convergence, especially in the most sensitive operating region. 

 

Table 5. Dynamic performance comparison at inertia time constant 𝑇𝑃 = 50 

Controller ISE IAE MaxDev 

MFAC 0.109 0.219 1.925 

MFAPC 0.072 0.165 1.646 

Proposed (IMFAPC) 0.044 0.131 1.009 

Table 6. Dynamic performance comparison at inertia time constant 𝑇𝑃 = 100 

Controller ISE IAE MaxDev 

MFAC 0.174 0.293 2.035 

MFAPC 0.102 0.207 1.778 

Proposed (IMFAPC) 0.057 0.151 1.009 

This behavior follows from PI-state prediction in (16)–(20): forecasting the coupled evolution of 𝜉𝑘 and 𝑒𝑘 

discourages repeated moves under inertial lag and prevents “late overshoot” when stored control effort is released. 

Table 5–Table 6 support Figure 9: although error indices increase with 𝜏 for all controllers, the proposed method 

consistently achieves the lowest ISE, IAE, and MaxDev. Reducing MaxDev is especially critical at high inertia 

because peak excursions drive large corrective actions and higher actuator/energy loading; limiting peaks while 

keeping integrated error low yields a more stable, energy-aware envelope. Tuning results highlight the aggressiveness–

smoothness trade-off. The predictive weight 𝜆 in (14) and (19) penalizes Δ𝑢𝑘: smaller 𝜆 accelerates transients but 

increases overshoot, whereas larger 𝜆 suppresses overshoot at the cost of slower response and possible residual error 

during fast set-point changes (Figure 10). The inhibition-based formulation offers a better compromise – similar 

overshoot with less input activity – because PI-state prediction limits error accumulation rather than relying on 

repeated large increments. Figure 11 shows that larger 𝜅̂init speeds the initial response but can reduce stability if the 

assumed gain is too high; an intermediate initialization is most reliable, after which (11) refines 𝜅̂𝑘. Once 𝜅̂𝑘 is 

reasonable, PI-state regulation (16)–(20) prevents estimation errors from producing excessive increments. Overall, 

Figure 9–Figure 11 and Table 5–Table 6 demonstrate robustness under increased inertia and interpretable tuning of 

the speed–overshoot–economy trade-off, with lower integrated error, smaller peaks, and smoother actuation. 

CONCLUSIONS 

This study proposed an inhibition-oriented, model-free adaptive predictive PI controller for nonlinear processes 

with pronounced dead time and strong inertia. A mechanistically interpretable, computationally tractable benchmark 

combined discrete-time nonlinear dynamics, a strongly nonlinear measurement map, and an explicit inertia–delay 

shaping block. The controller is built purely from input–output data using online pseudo-sensitivity estimation with 

short-horizon prediction, while its key novelty is regulating a predicted PI-type error state to inhibit error accumulation 

that typically drives overshoot and oscillations in delayed loops. Across set-point schedules, the proposed method 

produced tighter tracking and consistently lower overshoot than MFAC-type and MFAPC-type baselines, confirmed 

in Figure 5–Figure 6 and Table 2. Robustness tests showed the inhibition mechanism remains effective as delay steps 

increase and disturbance intensity rises, yielding smaller deviation envelopes and lower cumulative error under both 

noise levels (Figure 7–Figure 8, Table 3–Table 4). With increased inertia, it suppressed “late overshoot” and 

maintained stable convergence, achieving the best overall indices (Figure 9, Table 5–Table 6). Tuning studies 



highlighted practical trade-offs: the predictive weight sets input aggressiveness, and pseudo-sensitivity initialization 

affects early transients, enabling selection of a balance among speed, overshoot inhibition, robustness, and actuation 

economy (Figure 10–Figure 11). By embedding accumulated-error dynamics in the predictive objective, the approach 

reduces repeated large corrective increments, supporting resource-aware, energy-efficient operation. 

Limitations include reliance on offline parameter/horizon sweeps; an online auto-tuning mechanism would 

strengthen deployment. Future work will test additional process units with different nonlinearities and disturbance 

structures and address real-time implementation constraints, including computation limits and actuator bounds, to 

further establish industrial applicability. 
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