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Abstract. The rapid expansion of large-scale wind power plants has significantly increased the complexity of their 

operation and maintenance, making early fault detection a critical requirement for ensuring system reliability and economic 

efficiency. This study presents the development of an intelligent fault detection framework based on multivariate SCADA 

data for utility-scale wind power plants. The proposed approach exploits nonlinear temporal dependencies among key 

operational parameters, including component temperatures, power output, and environmental variables, to identify incipient 

faults at an early stage. The model was validated using two years of real operational data collected from a 300 MW wind 

farm comprising 100 wind turbines. Experimental results demonstrate that the proposed method achieves a detection 

accuracy of 95.8% and reduces the average fault detection time to 7.4 hours, outperforming conventional threshold-based 

diagnostics and baseline machine learning methods. Component-level analysis confirms high detection reliability for 

critical subsystems such as gearboxes, generators, and power converters. Furthermore, the implementation of the intelligent 

diagnostic framework contributes to a 21.4% reduction in unplanned downtime and an estimated annual energy yield 

increase of 2.6%. The obtained results confirm that intelligent fault detection represents a scalable and effective solution 

for enhancing reliability, reducing operational losses, and supporting the sustainable integration of large-scale wind energy 

into modern power systems. 

INTRODUCTION 

The global transition toward low-carbon energy systems has significantly accelerated the deployment of large-

scale wind power plants (WPPs) as a cornerstone of sustainable electricity generation. In many emerging and 

developing energy markets, including Central Asia, wind energy is no longer viewed as a supplementary resource but 

rather as a strategic pillar of long-term energy security and decarbonization. According to national energy development 

programs extending to 2030, the total installed generation capacity is projected to reach 31.6 GW, with a substantial 

share allocated to renewable energy sources. Within this structure, wind power alone is expected to contribute 

approximately 11 GW, representing more than one-third of all newly commissioned renewable capacities (Figure 1). 

Such a rapid scale-up inevitably increases the technical complexity, operational risks, and maintenance demands of 

wind power infrastructures. Large-scale wind farms consist of hundreds of geographically distributed wind turbines 

operating under highly variable mechanical, electrical, and environmental conditions. Components such as gearboxes, 

generators, power converters, pitch systems, and yaw mechanisms are exposed to cyclic loads, stochastic wind 

turbulence, and grid disturbances, which significantly increase failure rates compared to conventional power plants 

[1,2]. Empirical studies indicate that operation and maintenance (O&M) costs can account for 20–30% of the total 
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lifecycle cost of wind power plants, while unexpected failures may lead to production losses exceeding 5–10% 

annually. As installed capacity grows to the multi-gigawatt level, even minor improvements in fault detection accuracy 

can translate into substantial economic and reliability benefits. With generation expansion, national energy strategies 

emphasize deep modernization of electric power infrastructure. By 2030, more than 93 thousand km of electrical 

networks, 804 substations, and approximately 30 thousand power transformers are planned for commissioning or 

refurbishment (Figure 1). 

 
FIGURE 1. Main tasks in the fuel of Uzbekistan and energy sector until 2030 

These upgrades are accompanied by ambitious efficiency targets, including a reduction of electric power losses by 

up to 8% and gas losses by up to 3%. However, the increasing penetration of wind energy introduces additional 

operational challenges for transmission and distribution systems, such as power quality degradation, fluctuating 

reactive power flows, and increased stress on grid-connected equipment. Consequently, the reliability of wind power 

plants is no longer an isolated technical issue but a critical factor influencing the stability of the entire power system 

[3,4]. 

Traditional fault detection and condition monitoring approaches in wind turbines have largely relied on threshold-

based alarms, scheduled inspections, and model-based diagnostics derived from simplified physical representations. 

While these methods remain useful, they exhibit limited adaptability to non-stationary operating regimes and complex 

fault patterns typical of utility-scale wind farms. The widespread deployment of SCADA systems, high-frequency 

sensor networks, and digital substations has resulted in massive volumes of operational data, creating favorable 

conditions for the application of intelligent, data-driven fault detection techniques. The development of intelligent 

fault detection models based on machine learning and advanced data analytics emerges as a critical research and 

engineering task. Such models can learn nonlinear dependencies between multivariate operational parameters, 

identifying early degradation signatures, and distinguishing incipient faults from normal dynamic behavior. When 

integrated into real-time monitoring frameworks, intelligent algorithms enable predictive maintenance strategies that 

reduce unplanned downtime, extend equipment lifetime, and improve overall system availability. 

This study focuses on the development of intelligent fault detection models for large-scale wind power plants, 

aligned with national energy expansion and grid modernization objectives up to 2030. By leveraging real operational 

data and advanced analytical methods, the proposed approach aims to enhance fault detection accuracy, support loss-

reduction targets, and contribute to the reliable integration of gigawatt-scale wind energy into modern power systems. 

METHODOLOGY 

The proposed intelligent fault detection framework is based on multivariate time-series analysis of SCADA data 

acquired from large-scale wind power plants [5,6]. Let the SCADA measurement vector at time step 𝑡be defined as 

x𝑡 = [𝑥𝑡
(1)

, 𝑥𝑡
(2)

, … , 𝑥𝑡
(𝑛)

]
⊤

∈ ℝ𝑛      (1) 
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where 𝑛denotes the number of monitored operational variables, including component temperatures, power output, 

rotor speed, and environmental parameters. 

To capture temporal dependencies and nonlinear dynamics, a recurrent neural architecture is employed. The hidden 

state evolution is governed by 

h𝑡 = 𝜎(Wℎx𝑡+Uℎh𝑡−1+bℎ)       (2) 

where Wℎand Uℎare learnable weight matrices, bℎis the bias vector, and 𝜎(⋅)denotes a nonlinear activation function 

[7,8]. 

Anomaly scores are derived from reconstruction errors computed as 

𝒜𝑡 =∥ x𝑡 − x̂𝑡 ∥2
2       (3) 

where x̂𝑡is the reconstructed signal produced by the trained model. To enable adaptive fault detection, a dynamic 

threshold is defined using statistical confidence bounds: 

𝜃𝑡 = 𝜇𝒜 + 𝑘𝜎𝒜        (4) 

with 𝜇𝒜 and 𝜎𝒜  denoting the mean and standard deviation of anomaly scores under healthy operating conditions, and 

𝑘being a sensitivity coefficient. A fault is declared when 𝒜𝑡 > 𝜃𝑡, enabling early and robust detection of incipient 

failures. 

RESULT AND DISSCUSSION 

The proposed intelligent fault detection framework was validated using operational SCADA data collected from a 

utility-scale wind power plant with an installed capacity of 300 MW, comprising 100 wind turbines rated at 3 MW 

each. The dataset covered 24 months of continuous operation, with a sampling interval of 10 minutes, resulting in 

over 10 million data records. Key monitored variables included wind speed, rotor speed, generator temperature, 

gearbox oil temperature, active and reactive power, vibration indicators, and converter status signals. Fault labels were 

obtained from maintenance logs and included gearbox degradation, generator overheating, power converter faults, 

pitch system malfunctions, and bearing wear. In total, 1,248 fault events were identified, of which 72% were classified 

as incipient or early-stage faults, highlighting the importance of advanced detection mechanisms. 

The fault detection performance was evaluated using standard classification and prognostic metrics, including 

Accuracy (Acc), Precision (Pr), Recall (Re), F1-score, and Mean Detection Time (MDT) [8,9,10]. These metrics were 

computed as follows: 

Acc =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (5) 

F1 = 2 ⋅
Pr⋅Re

Pr+Re
    (6) 

To quantify early fault detection capability, the Expected Detection Delay (EDD) was calculated as: 

EDD = 𝔼[𝑡𝑑−𝑡𝑓], 𝑡𝑑 ≥ 𝑡𝑓  

where 𝑡𝑓denotes the actual fault initiation time and 𝑡𝑑represents the detection time predicted by the intelligent model. 

Table 1 presents a comparative evaluation of the proposed intelligent model against conventional threshold-based 

diagnostics and a baseline machine learning classifier (Random Forest). 

TABLE 1. Fault detection performance comparison 

Method Accuracy (%) Precision (%) Recall (%) F1-score MDT (hours) 

Threshold-based SCADA 81.3 78.5 69.2 0.737 42.6 

Random Forest 90.4 88.7 86.1 0.874 18.9 

Proposed Intelligent Model 95.8 94.6 93.2 0.939 7.4 

The results demonstrate that the proposed intelligent fault detection model significantly outperforms conventional 

approaches. Compared to threshold-based monitoring, detection accuracy improved by 14.5 percentage points, while 

the average detection time was reduced by approximately 82.6%. Early fault identification within 7.4 hours on average 

enables timely maintenance actions and prevents secondary damage. A detailed breakdown of detection performance 

across different turbine subsystems is provided in Table 2. 
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Table 2. Detection accuracy by wind turbine subsystem 

Subsystem Number of Faults Detection Accuracy (%) 

Gearbox 412 96.7 

Generator 286 95.9 

Power Converter 214 94.1 

Pitch System 201 95.3 

Bearings 135 93.8 

Gearbox-related faults exhibited the highest detection accuracy due to their strong thermal–vibrational signatures. 

Converter and bearing faults, which often present more subtle early symptoms, still achieved detection accuracies 

above 93%, confirming the robustness of the proposed approach.  

 

FIGURE 2. Temporal Evolution of SCADA-Based Temperature Signals of Wind Turbine Components during Fault 

Development 

Figure 2 illustrates the temporal evolution of the anomaly score produced by the intelligent model for a 

representative gearbox fault case. The anomaly score begins to deviate from nominal behavior approximately 36 hours 

prior to the recorded fault, crossing the adaptive detection threshold 28 hours in advance. In contrast, conventional 

SCADA alarms were triggered only 6 hours before shutdown, demonstrating the superior early-warning capability of 

the proposed method. 

Beyond fault detection accuracy, the implementation of intelligent diagnostics has a measurable impact on energy 

efficiency and operational reliability. Based on historical downtime statistics, the proposed system reduced unplanned 

turbine downtime by 21.4%, corresponding to an annual energy yield increase of approximately 2.6% at the plant 

level. Assuming an average capacity factor of 38%, this improvement translates into an additional 29.6 GWh/year for 

a 300 MW wind farm. From a system-level perspective, improved fault detection contributes directly to national 

objectives of reducing technical power losses by up to 8%, as outlined in energy sector development plans. 

The obtained results confirm that intelligent fault detection models provide a decisive advantage for the operation 

of large-scale wind power plants under real-world conditions. Unlike static threshold-based systems, the proposed 

model adapts to varying wind regimes, seasonal effects, and turbine aging, ensuring consistent performance over long 

operational periods. 
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The reduction in detection delay is particularly critical for high-cost components such as gearboxes and converters, 

where early intervention can prevent catastrophic failures and replacement costs exceeding USD 250,000 per turbine. 

Furthermore, the scalability of the proposed approach makes it suitable for integration into centralized monitoring 

platforms supporting hundreds of turbines and gigawatt-scale wind farms. 

CONCLUSION 

This study has demonstrated the effectiveness of intelligent fault detection models for enhancing the reliability and 

operational efficiency of large-scale wind power plants. By leveraging multivariate SCADA data and advanced data-

driven modeling techniques, the proposed framework successfully captures complex nonlinear relationships and 

temporal dynamics associated with wind turbine operation. The obtained results show that early fault detection can be 

achieved with high accuracy and significantly reduced detection delays, enabling timely maintenance actions and 

preventing severe component degradation. 

The experimental validation on a utility-scale wind farm confirms that the proposed approach outperforms 

conventional threshold-based monitoring methods, particularly in detecting incipient faults in critical components 

such as gearboxes, generators, and power converters. Beyond diagnostic performance, the reduction in unplanned 

downtime and the associated increase in energy yield highlight the tangible economic and operational benefits of 

intelligent condition monitoring systems. These improvements directly contribute to national and global objectives 

related to loss reduction, grid reliability, and the large-scale integration of renewable energy sources. 

Future research will focus on extending the proposed framework through hybrid modeling approaches that 

integrate deep learning with physical models, as well as incorporating additional data sources such as vibration and 

high-frequency electrical measurements. Such developments will further enhance fault interpretability, robustness, 

and applicability in next-generation smart wind power plants. 
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