

V International Scientific and Technical Conference Actual Issues of Power Supply Systems

Analysis of vibration in electric motors using contact and contactless methods

AIPCP25-CF-ICAIPSS2025-00379 | Article

PDF auto-generated using **ReView**

Analysis of vibration in electric motors using contact and contactless methods

Bobur Narzullayev¹, Bakhodir Ramazonov^{1, a)}, Javokhir Boboqulov¹,
Lola Karabayeva²

¹ Navoi State University of Mining and Technologies, Navoiy, Uzbekistan

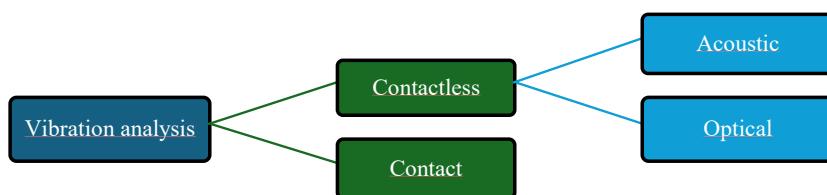
² Tashkent state technical university named after Islam Karimov, Tashkent, Uzbekistan

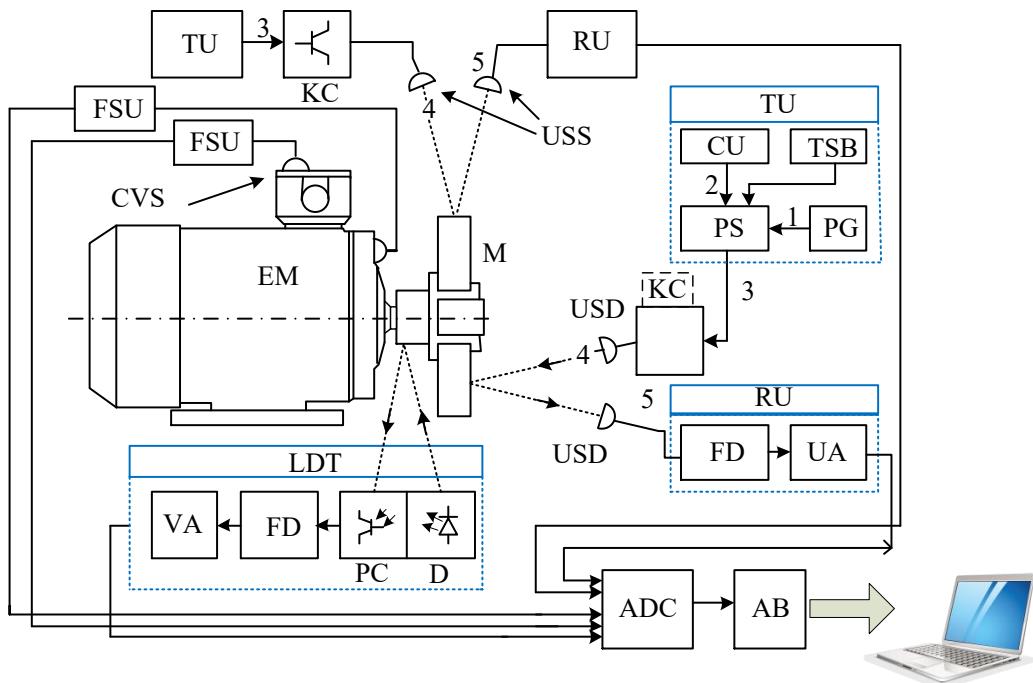
Corresponding author: bahodirmagistr2021@gmail.com

Abstract. Nowadays, electric motors are widely used in industrial enterprises to drive the drives of large-capacity machines and mechanisms. Electric motors are the mainstay of production. Therefore, ensuring the failure-free, reliable and stable operation of electric motors is one of the important tasks for our researchers. This article presents the results of two methods of analyzing the vibration state of motors - contact and non-contact vibration analysis. The results obtained showed that the vibration signals recorded using contact and non-contact sensors differed by 20 percent from each other. It was noted that the use of a non-contact method, which allows for direct and accurate measurement of vibration on a rotating shaft, is the most optimal solution.

INTRODUCTION

Currently, large industrial enterprises of our country place high demands on the reliable and uninterrupted operation of electromechanical equipment. The main element of electromechanical equipment is its electric motor. Electric motors are the main part of the technological process, and their failure leads to a stoppage of the technological process and significant economic losses [1-4]. Therefore, their stable operation is very important. Vibration analysis in electric motors allows for early detection of defects, prevention of malfunctions from escalating, and planned maintenance. Vibration in an electric motor is the displacement of a point in the motor relative to a certain average (zero) position. By analyzing vibration in an electric motor, it is possible to identify malfunctions in its components and even plan its service life in advance. Vibration analysis can be carried out in two ways, Figure 1 below shows a schematic division of the methods for vibration analysis of the motor [5-9].




FIGURE 1. Vibration analysis methods

The above figure shows the vibration analysis methods. If the measuring sensor is directly connected to the electric motor, it is called the contact method. That is, in the contact method, the measuring sensors are directly fixed to the surface of the motor [10-20]. The measuring sensor accurately records the vibrations of the rotor and housing, and detects bearing failures at an early stage [21-25].

If we carry out the analysis in an optical or acoustic direction, it is called the non-contact method. That is, it is a method of measuring without attaching any sensor to the motor housing and shaft. This method does not require

mechanical contact and allows you to diagnose insulation failure without stopping the motor [26-36]. According to the operating principle of the sensors used in the contact method of vibration analysis, it is divided into optical and acoustic types. Since the acoustic analysis of electric motor vibrations is cheaper than the optical method, the acoustic (ultrasonic) method is widely used (Figure 2).

The vibration monitoring system consists of the following elements: a set of ultrasonic sensors (USS); a transmitting unit (TU); a receiving unit (RU); a set of contact vibration sensors (CVS); a laser digital tachometer (LDT); an analog-to-digital converter (ADC); an analyzer unit (UA).

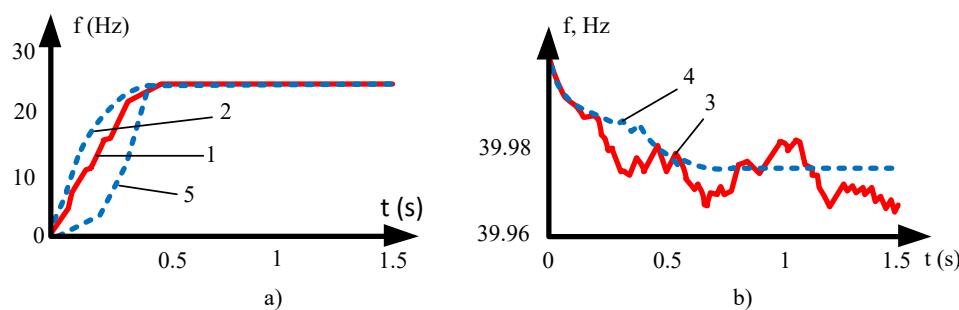
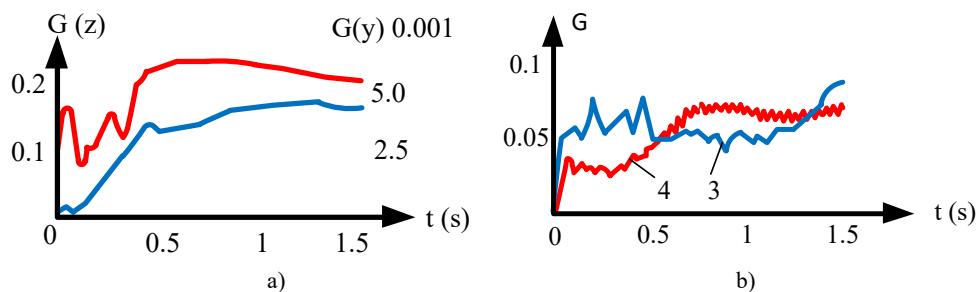


FIGURE 2. Schematic diagram of the non-contact (ultrasonic) vibration analysis of an electric motor.


The ultrasonic signal transmitter is built on the basis of a pulse generator (PG) and a task sequence block (TSB). Using the TSB settings, it is possible to set the phase manipulation sequence - Barker code and other sequences with a minimum width of the autocorrelation function. At the output, the signal is transmitted to the transmitter USD through a key circuit (EK) using a pulse shaping device (FIP). The control unit has the ability to set the duration and level of discreteness of the generated signal. The receiving path consists of a noise filtering device (FD) and a voltage amplifier (VA) based on an inverting amplifier. The tachometer unit consists of a light-emitting diode (D) based on a light-emitting diode and a receiving photocell (FE). Using the filter (FD), unnecessary excess waves are filtered, and the signal is amplified by an amplifier (UA). All signals are transmitted to an analog-to-digital converter (ADC) and then sent to the analyzer unit (AB). Signals from contact sensors (CVS) are cleaned of noise using a filter (FD) and transmitted to the ADC.

The system is implemented on the basis of the FPGA XC3S500E microcircuit, which is part of the Xilinx Spartan-3E series of modules. In the process of analysis, an electric drive equipped with an asynchronous electric motor (EM) of the AIR63A4U31 series was selected as the control object. The motor power is 250 W, and the rotation frequency is 1370 rpm. A flywheel (F) is installed on the engine shaft as a load. In the process of general analysis of the state of the control object, ultrasonic (US) transducers were placed in different directions (x, y or z) like contact sensors. In this case, the radiation of the ultrasonic transducer was directed to the rotating working mechanism, which is impossible when using contact sensors. The speed of rotation of the electric motor was additionally controlled using a tachometer.

Comprehensive analysis of vibration signals. Experiments were conducted in laboratory conditions to record vibration signals during start-up and loaded operating modes of an electric motor. Figures 3 and 4 show the time variation of the vibration frequency of the motor and the amplitude values (vibration amplitude at the fundamental frequency) during the start-up of the electric motor. Graphs of changes in vibration frequencies obtained in different directions and with different measurement methods (Figure 3) show that transient processes manifest themselves differently in all cases: the duration of the transient process is not the same, the shape of the frequency change graphs is different. The increase in the vibration frequency measured using contact sensors from the initial value after start-up to the steady-state value is approximately 400 ms (Figure 3, curves 1 and 2 in a). In measurements using ultrasonic transducers (UWT), this time is more than 500 ms (Fig. 3, curves 3 and 4 in b). Significant frequency fluctuations are observed in the graphs in the Z-axis direction (curve 3). This indicates that the data obtained by different methods differ significantly from each other and can complement each other. In addition, comparing the vibration signals with the tachometer signal (curve 5) shows that the dynamics of the shaft rotation speed, vibration frequency and amplitude changes in the Z-axis and perpendicular to it (y) direction of the electric motor in the acceleration mode differ sharply.

FIGURE 3. Frequency dependence graph of vibration analysis of an electric motor. a) readings from a contact vibration sensor and a laser digital tachometer, b) readings from an ultrasonic device.

FIGURE 4. Time-amplitude graph of vibration analysis. a) readings from a contact vibration sensor, b) readings from an ultrasonic device.

Part A of Figure 4 above (curves 1 and 2) shows a bi-directional variation of the amplitude of the spectrum of vibrational signals derived from contact sensors. Significantly different vibrational amplitudes in different directions from graphs create a clear possibility art A of Figure 4 above (curves 1 and 2) shows a bi-directional variation of the amplitude of the spectrum of vibrational signals derived from contact sensors. Significantly different vibrational amplitudes in different directions from graphs create a clear possibility. Thus, the deviation of the mechanical load of the Working Mechanism from the plane of rotation leads to the fact that the body vibrations are much larger in the direction along the shaft axis (z) than in the direction perpendicular to it (y).

For ultrasonic (non-contact) vibrational signals, the vibrational amplitude is mainly manifested in the phase modulation depth of the signal and has very little effect on its amplitude [37-66]. Therefore, the level of ultrasonic signals recorded in any measurement direction, regardless of the amplitude of the vibration, will be almost the same. Or ultrasonic (non-contact) vibrational signals, the vibrational amplitude is mainly manifested in the phase modulation depth of the signal and has very little effect on its amplitude. Therefore, the level of ultrasonic signals recorded in any

measurement direction, regardless of the amplitude of the vibration, will be almost the same. This does not require additional schematic solutions to account for the different measurement ranges of the amplitude of object surface fluctuations. Analysis of ultrasonic vibrational signals Spectra shows that the amplitude of the body vibrations varies several times (even at the order level) if the vibrational amplitudes along the shaft axis of the rotating working mechanism (z) and in the direction perpendicular to it (y) are comparable. Analysis of ultrasonic vibrational signals Spectra shows that the amplitude of the body vibrations varies several times (even at the order level) if the vibrational amplitudes along the shaft axis of the rotating working mechanism (z) and in the direction perpendicular to it (y) are comparable. That is, the shaft vibrations are transmitted to the housing with significant attenuation, so it is possible to obtain the values of the measurements carried out directly remotely on the rotating elements of the electric motor [21-25].

The increase in vibration frequency during vibration varies by more than 20% in contact and ultrasonic measurements during transient process time (1, 2, 4 curves in Figure 3). The electric motor vibrates significantly on the Z axis even when operating in normal mode (Figure 3, curve 3 in Part B), which is not observed in contact measurements of body vibrations. He increases in vibration frequency during vibration varies by more than 20% in contact and ultrasonic measurements during transient process time (1, 2, 4 curves in Figure 3). The electric motor vibrates significantly on the Z axis even when operating in normal mode (Figure 3, curve 3 in Part B), which is not observed in contact measurements of body vibrations. The shaft under load achieves normal rotational speed much more slowly at this time the vibration frequency in the shaft is significantly behind the body vibration frequency. Thus, it becomes possible to detect slow changes in shaft amplitudes using non-contact ultrasonic vibration analysis.

CONCLUSIONS

In conclusion, it can be said that there is an opportunity for complex vibrational analysis of an electric motor using non-contact ultrasonic measurements. It has been found that there are significant differences in the values of recorded vibrational signals using contact and non-contact sensors. Signals obtained by different methods contain information of a different nature, it can be said that there is an opportunity for complex vibrational analysis of an electric motor using non-contact ultrasonic measurements. It has been found that there are significant differences in the values of recorded vibrational signals using contact and non-contact sensors. Signals obtained by different methods contain information of a different nature. It is possible to simultaneously compare the vibration parameters of the moving and stationary elements of the electric motor from the complex data obtained from all sensors. This makes it possible to determine the electromechanical indicators that arise in the vibrational state of the electric motor.

REFERENCES

1. Boboqulov J., Narzullayev B. Development of a model for diagnosing rotor conditions in the parallel connection of synchronous generators with the network // E3S Web of Conferences. – EDP Sciences, 2024. – T. 525. – C. 06001. <https://doi.org/10.1051/e3sconf/202452506001>
2. Tursunova A. et al. Researching localization of vertical axis wind generators //E3S Web of Conferences. – EDP Sciences, 2023. – T. 417. – C. 03005. <https://doi.org/10.1051/e3sconf/202341703005>
3. Numon Niyozov, Anvar Akhmedov, Shukhrat Djurayev, Botir Tukhtamishev, Asliddin Norqulov, Development of a method for forecasting the specific consumption indicator of electric energy, AIP Conf. Proc. **3331**, 080008 (2025) <https://doi.org/10.1063/5.0305729>
4. Bakhodir Ramazonov, Shakhzodbek Sayfiev, Khasan Muradov, Mathematical modeling and research of high capacity lead-acid stabilized accumulator battery, AIP Conf. Proc. **3268**, 020043 (2025) <https://doi.org/10.1063/5.0257860>
5. Khasan Murodov, Askarbek Karshibayev, and Shukhrat Abdullayev, Analysis of the process of balanced charging of the battery group with high capacity, E3S Web of Conferences **548**, 03012 (2024) <https://doi.org/10.1051/e3sconf/202454803012>
6. Muzaffar Xolmurodov., Shaxzod Hakimov., Umida Oripova, Improving energy efficiency in public buildings: Modern technologies and methods, AIP Conf. Proc. **3331**, 040060 (2025) <https://doi.org/10.1063/5.0306935>
7. Oybek Ishnazarov, Jonibek Mavlonov and Davron Mardonov. Control of ball mill operation depending on ball load and ore properties. E3S Web Conf. Volume **461**, 2023 Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems” (RSES 2023)

8. Shirinov S.G., J.S. Olimov, I.Z. Jumayev, M.K. Sayidov Analysis of patterns of electricity consumption in mining and processing enterprises. Vibroeng. Procedia 2024, **54**, 308–313. <https://doi.org/10.21595/vp.2024.24073>
9. Jumayev, Z.I., Karshibayev, A.I., Sayidov, M.K., & Shirinov, S.G. Analysis of climate-meteorological and technological factors affecting electricity consumption of mining enterprises. Vibroengineering Procedia, Vol. **54**, pp. 293-299 (Apr. 4 2024). <https://doi.org/10.21595/vp.2024.24047>
10. O.O. Zaripov, S.J. Nimatov, Y.M. Yeralieva, S.O. Zaripova, M.A. Zakirov, D.M. Nomozova, J.T. Akhmedov, Akram Tovbaev. Calculation of the nominal power and electrical energy of the hydro power plant on an electronic calculator. E3S Web Conf. Volume **486**, 2024. IX International Conference on Advanced Agritechologies, Environmental Engineering and Sustainable Development (AGRITECH-IX 2023). <https://doi.org/10.1051/e3sconf/202448601027>
11. Mukhtorkhon Ibadullayev; Shavkat Begmatov; Akram Tovbaev. Subharmonic resonance in three-phase ferroresonant circuits with common magnetic cores. AIP Conf. Proc. **3152**, 050019 (2024) <https://doi.org/10.1063/5.0218907>
12. Akram Tovbaev, Muxtarxon Ibadullayev and Mohinur Davronova. Study of subharmonic oscillation processes in ferroresonance circuits. E3S Web of Conf. Volume **525**, 2024. IV International Conference on Geotechnology, Mining and Rational Use of Natural Resources (GEOTECH-2024). <https://doi.org/10.1051/e3sconf/202452503008>
13. Narzullayev B. S., Eshmirzaev M. A, Causes of the appearance of current waves in high voltage electric arc furnaces, and methods of their reduction, E3S Web of Conferences. – EDP Sciences, 2023. – T. **417**. – C. 03003. <https://doi.org/10.1051/e3sconf/202341703003>
14. Akram Tovbaev., Islom Togaev., Uktam Usarov., Gulom Nodirov, Reactive power compensation helps maintain a stable voltage profile across the network, AIP Conf. Proc. **3331**, 060014 (2025). <https://doi.org/10.1063/5.0307209>
15. Asliddin Norqulov, Feruz Raximov, Methods for evaluating financial and economic effectiveness of investment projects in the energy sector with time factor considerations, AIP Conf. Proc. **3331**, 030070-1–030070-6. <https://doi.org/10.1063/5.0306104>
16. Shukhrat Abdullaev., Ziyodullo Eshmurodov., Islom Togaev, A systematic analysis of the gradual increase in quality indicators of electricity using reactive power sources involves several steps, AIP Conf. Proc. **3331**, 040051 (2025). <https://doi.org/10.1063/5.0306786>
17. Turdibekov K. et al. Experimental and statistical methods for studying the modes of electric power systems under conditions of uncertainty //E3S Web of Conferences. – EDP Sciences, 2023. – T. 452. – C. 04002. <https://doi.org/10.1051/e3sconf/202345204002>
18. Bobur Narzullayev; Javokhir Boboqulov, Improving reliability based on diagnostics of the technical condition of electric motor stator gutters, AIP Conf. Proc. **3331**, 030032 (2025). <https://doi.org/10.1063/5.0305735>
19. Abdurakhim Taslimov., Feruz Raximov., Farrukh Rakhimov., Iles Bakhadirov, Optimal parameters and selection criteria for neutral grounding resistors in 20 kv electrical networks, AIP Conf. Proc. **3331**, 030048 (2025) <https://doi.org/10.1063/5.0306108>
20. Islom Togaev., Akram Tovbaev., Gulom Nodirov, Systematic analysis of reactive power compensation in electric networks is essential for improving electricity quality enhancing system stability, and reducing operational costs, AIP Conf. Proc. **3331**, 030099 (2025) <https://doi.org/10.1063/5.0305740>
21. Abdurakhim Taslimov., Farrukh Rakhimov., Feruz Rakhimov., Vaxobiddin Mo'minov, Analysis of the results of sampling the surfaces of sections of rural electric networks, AIP Conf. Proc. **3331**, 030041 (2025) <https://doi.org/10.1063/5.0305783>
22. Sulton Amirov, Aminjon Ataullayev, Sine-cosine rotating transformers in zenith angle converters, E3S Web of Conferences **525**, 03010 (2024) GEOTECH-2024, <https://doi.org/10.1051/e3sconf/202452503010>
23. Sultan F. Amirov, Nodir O. Ataullayev, Amin O. Ataullayev, Bobur Q. Muxammadov, and Ahror U. Majidov, Methods for reducing the temperature components of magnetomodulation DC convertors errors, E3S Web of Conferences **417**, 03011 (2023) GEOTECH-2023 <https://doi.org/10.1051/e3sconf/202341703011>
24. Raximov, F., Taslimov, A., Majidov, A., & Norqulov, A. (2024). Optimization of losses by switching to higher voltage in distribution networks. In E3S Web of Conferences (Vol. **525**, p. **03009**). EDP Sciences. <https://doi.org/10.1051/e3sconf/202452503009>
25. A.Tovboyev, I.Togayev, I.Uzoqov, G. Nodirov, Use of reactive power sources in improving the quality of electricity, E3S Web of Conferences 417, 03001 (2023) <https://doi.org/10.1051/e3sconf/202341703001>
26. I.Togayev, A.Tovbaev, G. Nodirov, Assessment of the quality of electricity by applying reactive power sources, E3S Web of Conferences, 525, 03004 (2024) <https://doi.org/10.1051/e3sconf/202452503004>
27. G.Boynazarov, A. Tovbaev, U. Usarov, Methology of experimental research of voltage quality in electrical circuit, E3S Web of Conferences 548, 03009 (2024) <https://doi.org/10.1051/e3sconf/202454803009>

28. O.Jumaev, M. Ismoilov, D. Rahmatov, A. Qalandarov, Enhancing abrasion resistance testing for linoleum and rubber products: A proposal for improved device operation, E3S Web of Conferences 525, 05012 (2024) <https://doi.org/10.1051/e3sconf/202452505012>

29. Ataullayev N.O., Muxammadov B.Q., Idieva A.A., Research of dynamic characteristics of magnetic modulation current converter with negative feedback // International Journal of Advanced Research in Science, Engineering and Technology, India, 2020, November, Vol. 7, Issue 11. – P. 15749-15752. http://www.ijarset.com/volume-7-issue-11.html?utm_source=chatgpt.com

30. N.Ataullayev, A.Norqulov, B.Muxammadov, A.Majidov, I.Tog'ayev. Principles of protection against single phase earth faults in networks with capacitive current compensation. E3S Web of Conferences, 548, 06008 (2024). <https://doi.org/10.1051/e3sconf/202454806008>

31. Shirinov S.G., J.S. Olimov, I.Z. Jumayev, M.K. Sayidov Analysis of patterns of electricity consumption in mining and processing enterprises. Vibroeng. Procedia 2024, 54, 308–313. <https://doi.org/10.21595/vp.2024.24073>

32. Jumayev, Z.I., Karshibayev, A.I., Sayidov, M.K., & Shirinov, S.G. Analysis of climate-meteorological and technological factors affecting electricity consumption of mining enterprises. Vibroengineering Procedia, Vol. 54, pp. 293-299 (Apr. 4 2024). <https://doi.org/10.21595/vp.2024.24047>

33. Amirov S.F., Ataullayev N.O., Ataullayev A.O., Muxammadov A.O., Majidov B.Q., A.U. Methods for reducing the temperature components of magnetomodulation DC converter errors. *E3S Web of Conferences*, 417, 03011 (2023). <https://doi.org/10.1051/e3sconf/202341703011>

34. Amirov S.F., Ataullayev A.O., Sayidov M.K., Togayev I.B. Methods of reduction of interference signals in electromagnetic conductors that measure fluid flow Journal of Physics: Conference Series, 2094(5), 052053 (2021) [10.1088/1742-6596/2094/5/052053](https://doi.org/10.1088/1742-6596/2094/5/052053)

35. Olimov J., Ramazonov B., Sayfiyev S. Increasing efficiency of induction motor by predictive control system //E3S Web of Conferences. – EDP Sciences, 2024. – Т. 525. – С. 03006. <https://doi.org/10.1051/e3sconf/202452503006>

36. Murodov K., Karshibayev A. Development of the management system of technical indications of high-power charger-discharger rectifier device //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 417. – С. 03012. <https://doi.org/10.1051/e3sconf/202341703012>

37. Mahmutkhonov S., Baizhonova L., Mustayev R., Tashmatova S. Dynamic analysis of voltage-ampere characteristics and harmonic distortions in electric arc furnaces. // *AIP Conference Proceedings*. 3331(1), 2025. pp. 070023, 1–5. <https://doi.org/10.1063/5.0305745>.

38. Bobojanov M., Mahmutkhonov S. Influence of the consumer to power quality at the point of connection // E3S Web of Conferences 384. 2023. PP, 01041, 1-5. <https://doi.org/10.1051/e3sconf/202338401041>.

39. Bobojanov M.K., Karimov R.Ch., Popkova O.S., Tuychiev F.N., Makhmutkhonov S.K. Analysis of the results of experimental studies of the arc furnace DSP-30. // *Power Engineering Research & Technology*. 27(2), 2025. pp. 126–137. <https://doi.org/10.30724/1998-9903-2025-27-2-126-137>

40. Reymov K.M., Makhmuthonov S.K., Turmanova G., Uzaqbaev Q. Optimization of electric networks modes under conditions of partial uncertainty of initial information // E3S Web of Conferences 289, 07023 (2021). -2021, pp: 1-4, <https://doi.org/10.1051/e3sconf/202128907023>.

41. R. K. Kurbaniyazov, A. M. Reimov, A.T. Dadakhodzhaev, Sh. S. Namazov, B. M. Beglov. Nitrogen-phosphoric fertilizers produced by introduction of Central Kyzylkum phosphate raw material into ammonium nitrate melt. Russian Journal of Applied Chemistry. Russ J Appl Chem (2007) 80(11): 1984-88. <https://doi.org/10.1134/S1070427207110456>

42. Namazov, Sh.S., Kurbaniyazov, R.K., Reimov, A.M., Beglov, B.M. Hardness of the granules of ammonium nitrate doped with the Central Kyzylkum Phosphorite. Russian Journal of Applied Chemistry. Russ J Appl Chem (2007) 81(6): 1103–1106. <http://dx.doi.org/10.1134/s1070427208060402>.

43. Kurbaniyazov, R.K., Reimov, A.M., Namazov, Sh.S., Beglov, B.M. Nitrogen-phosphoric fertilizers obtained by interaction of the concentrated solutions of ammonium nitrate with the mineralized mass of the phosphorites of Central Kyzylkum. Russian Journal of Applied Chemistry. Russ J Appl Chem (2009) 82: 1123. <https://link.springer.com/journal/11167>

44. Alimov, U.K., Reimov, A.M., Namazov, Sh.S., Beglov, B.M. The insoluble part of phosphorus fertilizers, obtained by processing of phosphorites of central kyzylkum with partially ammoniated extraction phosphoric acid. Russian Journal of Applied Chemistry. Russ J Appl Chem (2010) 83(3): 545–552. <https://doi.org/10.1134/S107042721030328>

45. Reymov, A.M., Namazov, S.S., Beglov, B.M. Effect of phosphate additives on physical-chemical properties of ammonium nitrate. Journal of Chemical Technology and Metallurgy 2013 48(4), 391-395. <http://dl.uctm.edu/journal/>

46. Reymov Akhmed, Namazov Shafoat. Nitrogen-phosphorous fertilizers on the base of concentrated ammonium nitrate solution and Central Kyzylkum phosphate raw material. Polish Journal of Chemical Technology 16(3), Sep 2014, 30-35. <https://doi.org/10.2478/pjct-2014-0046>

47. Alisher Eshimbetov, Shahobiddin Adizov, Inderpreet Kaur, Akhmed Reymov. Is it possible to differentiate between 2-phenylaminodihydro-1,3-thiazine from 2-phenyliminotetrahydro-1,3-thiazine by spectral methods? New glance to the old problem. European Journal of Chemistry 12 (1) (2021). <https://doi.org/10.5155/eurjchem.12.1.77-80.2068>

48. A.Ahmadjonov, U.Alimov, P.Tuychi, A.Seitnazarov, A.Reimov, Sh.Namazov, S.Sadullayev. Effect of temperature on the kinetics of the process of nitric acid decomposition of Arvaten serpentinite. IOP Conf. Series: Earth and Environmental Science 1142 (2023) 012034. <https://www.scopus.com/pages/publications/85151285667>

49. Xudoyberdiev J., Reymov A., Kurbaniyazov R., Namazov S., Badalova O., Seytnazarov A. Mineral Composition of Nodular Phosphorite of Karakalpakstan and its Processing into Simple Superphosphate. (2023) E3S Web of Conferences, 449, art. no. 06005. <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178595919&doi=10.1051%2fe3sconf%2f202344906005&partnerID=40>

50. Kosnazarov K., Ametov Y., Khabibullaev A., Reymov A., Turdimambetov I., Shaniyazov S., Berdimuratova A. Characteristics of dust-salt transfer from the dried bottom of the Aral Sea and the Aral region, as well as their lossout. E3S Web of Conferences. <https://www.scopus.com/pages/publications/85212840616>

51. Seyilkhanova A., Reymov Q., Eshmuratov A., Gulimbetov B., Medetov M., Reymov A., Berdimuratova A., Shaniyazov Sh. E3S Web of Conferences ISSN: 25550403 Volume: 575. <https://www.scopus.com/pages/publications/85212825022>

52. Turdimambetov I., Murgaš F., Victor F., Oteuliev M., Madreimov A., Shamuratova G., Atabayev S., Reymov A. Geojournal of Tourism and Geosites. ISSN: 20650817, Volume: 57 Pages: 1941 – 1951. <https://www.scopus.com/pages/publications/85213872579>

53. Temirov G., Alimov U., Seytnazarov A., Reymov A., Namazov S., Beglov B. Rheological Properties and Composition of Products of Phosphogypsum Conversion with Sodium Carbonate. Russian Journal of General Chemistry. ISSN: 10703632 Volume: 94 Issue: 7 Pages: 1837 – 1847. <https://www.scopus.com/pages/publications/85202786813>

54. Reymov A., Turdimambetov I., Pirnazarov N., Shaniyazov Sh., Absamatova D., Baymurzaev A., Orazbaev A., Usnatinov A., Tajetdinov S. Exploring novel techniques for measuring and identifying minuscule dust particles in the atmosphere. E3S Web of Conferences ISSN: 25550403 Volume: 575. <https://www.scopus.com/pages/publications/85212822728>

55. Chavliyeva F., Turakulov B., Kucharov B., Erkayev A., Reymov A., Karshboev M., Mamajonov M. Study of obtaining potassium hydroxide by electrochemical method on the bases of flotation and hallurgic potassium chloride. New Materials, Compounds and Applications ISSN: 25217194 Volume: 8 Issue: 2 Pages: 244 – 253. <https://www.scopus.com/pages/publications/85204364412>

56. Kuldasheva S., Aziza A., Kulmatov R., Karimova G., Dauletbayeva R., Nortojiyeva G., Reymov A. Study and assessment of mineralogical, chemical and granulometric composition of volatile soil-sand aerosols from the dried-out part of the Aral Sea. E3S Web of Conferences ISSN: 25550403 Volume: 575. <https://www.scopus.com/pages/publications/85212848932>

57. M. Medetov, D. Musaev, U. Shakarbaev, A. Yusupova, J. Tajibaeva, A. Reymov, A. Yusupova, D. Bazarbaeva, B. Gulimbetov. Insect fauna of the Republic of Uzbekistan: Rare true bugs (Hemiptera, Heteroptera). Regulatory Mechanisms in Biosystems ISSN: 25198521 Volume: 15 Issue: 4 Pages: 882 – 888. <https://www.scopus.com/pages/publications/85218798691>

58. Kurbaniyazov R.K., Khudoyberdiev J.H., Reymov A.M., Namazov Sh.S., Radjapov R., Seytnazarov A.R. Characteristics of nodular phosphorites of karakalpakstan and their processing into granular simple superphosphate. ChemChemTech ISSN: 05792991 Volume: 68 Issue: 1 Pages: 109 – 119. <https://www.scopus.com/pages/publications/85211354040?origin=resultslist>

59. M.ZH.Medetov, J.K.Abdullaeva, A.M. Reymov, A.M.Miratdinova, A.K.Seytmuratov, J.D.Tajibaeva, R.S.Kadirov, N.A.Utemuratov, S.K.Kimyonazarov, J. Kudratov, R.S.Urazova, X.X.Keldiyova, U.B.Uralov. Diversity of true bugs (Hemiptera: Heteroptera) of the Southern Aral Sea Region, Uzbekistan. Biodiversitas ISSN: 1412033X Volume: 26 Issue: 7 Pages: 3125 – 3135. <https://www.scopus.com/pages/publications/105014219940?origin=resultslist>

60. Ulugbek Urinov, Nilufar Hamidova and Ilhom Mirzakulov . Chemical technology of oligomers production from homopolymer based on epichlorohydrin and morpholine. E3S Web of Conferences 497, 03030 (2024) ICECAE 2024. <https://doi.org/10.1051/e3sconf/202449703030>

61. Bakhtiyor, K., Gafurov, B., Mamatkulov, A., Shayimov, F., Tukhtaev, B. AIP Conference Proceedings, 3331(1), 080001. <https://doi.org/10.1063/5.0306044>
62. Khusanov, B., Keunimjaeva, A., Jalelova, M., Rustamov, S. AIP Conference ProceedingsOpen source preview, 2024, 3152(1), 030024. <https://doi.org/10.1063/5.0218924>
63. Khusanov, B., Arzuova, S., Radjapov, Z., Babaev, O. AIP Conference ProceedingsOpen source preview, 2024, 3152(1), 030028. <https://doi.org/10.1063/5.0219241>
64. Urishev, B., F. Artikbekova, D. Kuvvatov, F. Nosirov, and U. Kuvatov. 2022. "Trajectory of Sediment Deposition at the Bottom of Water Intake Structures of Pumping Stations." IOP Conference Series: Materials Science and Engineering, 1030(1). <https://doi.org/10.1088/1757-899X/1030/1/012137>
65. Nosirov, Fakhreddin, Abdurasul Juraev, Ibragim Khamdamov, and Nurmukhammed Kuvatov. 2023. "Economic Calculation of a Photoelectric Station for Degradation Processes." AIP Conference Proceedings. <https://doi.org/10.1063/5.0130642>
66. Nosirov, Fakhreddin, Oleg Glovatsky, Bekzod Khamdamov, and Armen Gazaryan. 2023. "Increasing the Stability of the Supply Hydraulic Structures." AIP Conference Proceedings. <https://doi.org/10.1063/5.0218867>