

Operating characteristics of pumping installations and analysis of ensuring energy saving modes

Muzaffar Kholmurodov^{1, a)}, Bobokul Shaymatov², Ziyodullo Eshmurodov¹,
Nigora Gulyamova³

¹ Navoi State University of Mining and Technologies, Navoiy, Uzbekistan

² Bukhara State Technical University, Bukhara, Uzbekistan

³ Tashkent state technical university named after Islam Karimov, Tashkent, Uzbekistan

^{a)} Corresponding author: muzaffar_xolmurodov@mail.ru

Abstract. Improving the energy efficiency of the technological process in the water supply of reclamation pumping stations as well as the development of energy and resource-saving modes of hydromechanical equipment and electrical systems of pumping stations in a number of priority areas.

INTRODUCTION

Pumping stations are widely used in mining, metallurgical, oil, gas, chemical and other industrial technological systems, as well as drainage and water supply systems, heat supply infrastructure and energy, housing and communal service facilities. As an important part of the transportation and distribution network, pumps represent one of the largest infrastructure assets of an industrial society. About 4% of the world's electricity consumption is used for pumping water in water supply systems, and up to 89% of this consumption is generated by electricity. In addition, increasing the irrigated area by improving the efficiency of electricity and water use in reclamation systems, the development of irrigated agriculture, is one of the most powerful means of developing the rehabilitation economy in general. Analysis of the structure of electricity consumption shows that the main consumers are pumping stations and water supply stations. This leads to the research and application of energy-saving electric drives of pumping units [1-4]. A modern pumping station is a set of pumps with its own control system, which operates in automatic mode according to a certain law, has a full range of electrical and technological protections. In real systems, the number of pumps varies from two to seven and is determined by the optimal ratio between the efficiency zone, the cost of the control system that consumes when pumping water from one place to another, and encourages to increase the necessary reliability and reserve [5-7]. Taking into account the variability of water demand in the world, non-constant irrigation time, crop rotation and other environmental factors, special importance is attached to the issue of increasing the energy efficiency of pumping stations in the reclamation system on the basis of adjustable electrical control. Therefore, in automated control systems of pumping devices, frequency-controlled electric drives are used to coordinate the operation mode of pumps with the operation mode of the water supply system [8].

EXPERIMENTAL RESEARCH

The use of frequency-controlled driving allows the implementation of effective intelligent control systems for the technological mode of the pump using pressure sensors. Accordingly, scientists of many countries are currently conducting research on the introduction of frequency control of pump units and thus the smooth coordination of the operation mode of the pump unit and the operation modes of the technological process of pumping water from one place to another. In the implementation of these tasks, in particular, increasing the energy efficiency of pumping stations based on the management of the water level in the BASIN, determining the most important factors affecting its power consumption, systematic management of the "frequency-adjustable electric drive-asynchronous motor-

melioration pump" and determining the optimal operating mode of the pumping equipment and their research is important.

It is important to develop automated systems aimed at managing reclamation networks in the efficient use of energy resources. Single-pump pumping stations allow for high performance, while multi-pump stations are able to meet real wastage requirements with less energy consumption [9-12]. Increasing the efficiency and reliability of centrifugal pumps in the conditions of small and medium-capacity multi-unit pumping units is very relevant, especially in water supply systems with a variable organization of loading, for example, in systems with recovery and low static pressure. Presents the results of the study of determining the efficiency of pumping stations under conditions of variable water consumption . The main reasons for the decrease in efficiency of pumping stations are identified. Affects the time the driven pump unit spends in the ineffective zone the main factors are identified. A method of controlling a group of pump groups is proposed, taking into account the simultaneous operation of each of them. Thus, at the current stage, the characteristics of the pump station control system are closely related to the changes in the consumption of energy resources (electricity water). One of the main goals of pumping stations is to increase energy efficiency, to meet the requirements of the technological process in terms of both pressure and productivity. The introduction of group control shows a reduction in power consumption of the pumping station by 20-24%, a reduction in the number of catastrophic situations is achieved by 85% [13-16]. In meliorational systems, a change in the entire structure of land areas is observed with interconnected hydraulic and other devices, such as canals, collectors, pipes, reservoirs, dams, pumping stations, water intakes, which ensure the creation of optimal water, air, heat and nutrient regimes on reclaimed lands. It is known that 4.3 million hectares of 6.3 million hectares of irrigated land in our Republic are supplied with water through pumping stations. In terms of capital costs of ameliorative irrigation, infrastructure development is one of the main sectors of water management of our country. 1,693 pumping units with a total capacity of about 7,000 m³/s were installed at 5,301 pumping stations on the balance sheet of the Ministry of Water Management of the Republic of Uzbekistan.

The technological scheme of the Polkan reclamation pumping station of the Pumping Stations and Energy Department of the Lower Zarafshon BASIN Irrigation Systems Department is presented.

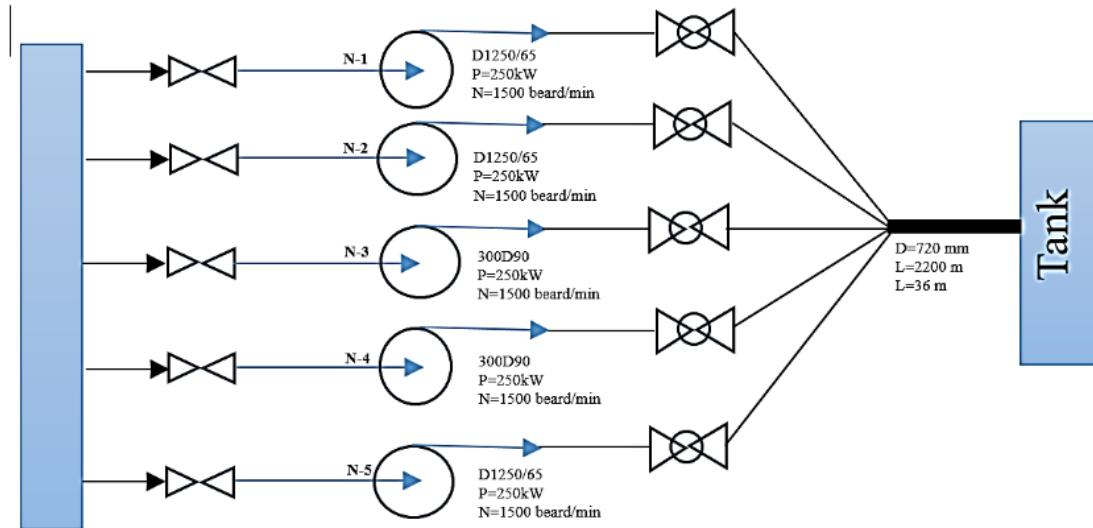


FIGURE 1. Connection diagram of 5 pump units

According to Fig. 1. 5 asynchronous motor pump units with a capacity of 250 kW are operating at the Polkan reclamation pumping station. The pumps are designed to fill the reservoir (pond) with water at a distance of 2.2 km. Descriptions of pumps of type D1250 / 65 in operation are shown in Fig. 2. this technological scheme is used in most reclamation pumping stations in Uzbekistan (when the number and power of pumping units change) [17-20].

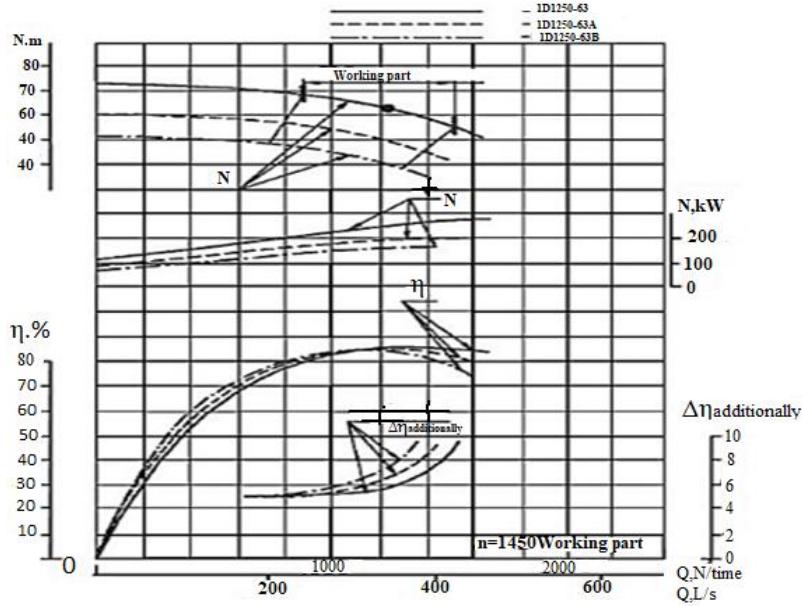


FIGURE 2. Specifications of the D1250 / 65 pump

In fig. 3. shows the descriptions of the pumping stations of the Lower Zarafshon BASIN Irrigation Systems Department and the Polkan reclamation pumping station of the Energy Department. As can be seen from the research result and Figure 3, this pumping station works in an inefficient mode, because due to the parallel operation, there is a need to optimally distribute the supply and loads between the pumping units [21-24]. To meet the requirements of the technological process, the operation of the pump is regulated by water management (Fig. 3. 1 - when the valve is fully opened, when the valve 2 is opened at 30 degrees). In cases of parallel operation of the pump, it was found that difficulties arise due to the complexity of the implementation of the technological task of dividing the load between the units and ensuring the stability of the water level in the pool. In addition, the increase in energy prices in recent decades has created the need to pay more attention to the efficient use of energy. Since many water distribution systems require large amounts of energy to drive, transport and deliver water, improve pump control, and reduce energy consumption and operating costs, making the network more efficient should be considered a priority. When solving this problem, it is necessary to take into account the efficiency of pumps, the structure of consumer demand and the possibility of having a control system in the system. The interrelationship between pump unit controls, resulting in pump power consumption, power consumption, and network current regime should be considered through network nonlinear hydraulics and pump specifications.

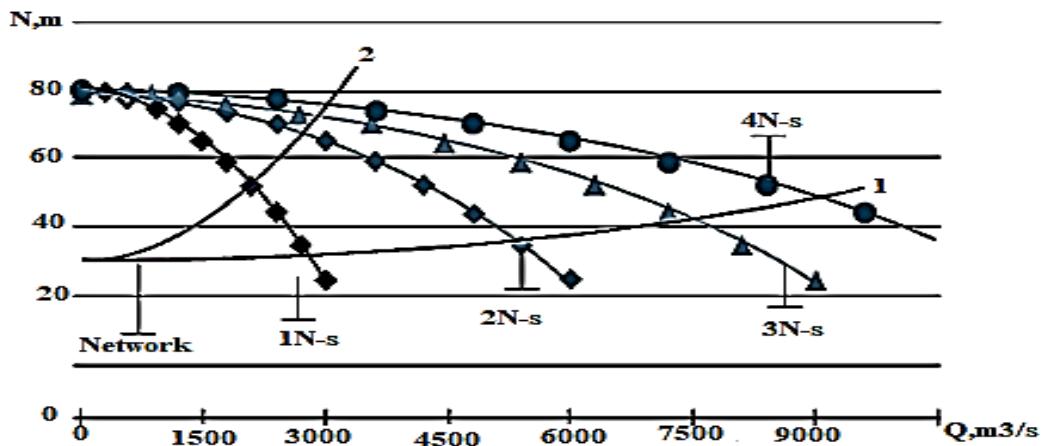


FIGURE 3. Pump stations of the Lower-Zarafshon Basin Reclamation Systems Department and Operational Description of the Polkan Reclamation Pumping Station of the Energy Department

In addition, the increase in energy prices in recent decades has created the need to pay more attention to the efficient use of energy. Since many water distribution systems require large amounts of energy to drive, transport and deliver water, improve pump control, and reduce energy consumption and operating costs, making the network more efficient should be considered a priority. When solving this problem, it is necessary to take into account the efficiency of pumps, the structure of consumer demand and the possibility of having a control system in the system. The interrelationship between pump unit controls, resulting in pump power consumption, power consumption, and network current regime should be considered through network nonlinear hydraulics and pump specifications. It is known that pumping stations are one of the facilities that require the largest amount of electricity. In this regard, the provision of their energy-saving modes is of particular priority, which allows to save a large amount of electricity (about 15-18% of the consumed) on the scale of the Republic in the implementation of the technological process of water supply. The tasks of development of energy-resource saving modes of reclamation pumping stations should be based on the following:

- strict compliance of the water consumption schedule in the supply of the pumping station;
- choosing a reasonable option of energy-hydromechanical equipment with controlled electric drive capable of fully automating the technological process of supplying water to reclamation pumping stations.

To date, the method used in reclamation pumping stations to manage productivity is to change the number of work units that provide step-by-step (unit-wise) management of the supplied water [31-60]. At the same time, there is a discrepancy between the actual schedule of water consumption in most of the controlled reclamation pumping stations and its compensation by the operation of the reclamation pumping stations. Therefore, in order to exclude the loss of productivity of planted crops, reclamation pumping stations work with an overload schedule, which in turn leads to unreasonable consumption of water resources and electricity. Another characteristic of pumping stations is their transfer to controlled electric operation instead of an uncontrolled system, which of course allows efficient use of electricity and water, transition to complex automation of the technological processes of water supply to the pumping station, increases the flexibility of managing the loads of electrical equipment, the control of the load of electrical equipment is power and hydromechanical extends the overall life of the equipment [25-30].

RESEARCH RESULTS

The assessment of the energy efficiency of the reclamation pumping station can be determined taking into account the characteristics of each pumping station and can be obtained only taking into account the characteristics of the pump, pressure pipeline and basin. In this regard, we have developed a mathematical model on the example of the Polkan reclamation pumping station to determine the operating mode of the "asynchronous motor - reclamation pump - pipe - basin" system.

$$H = H_0 \left(\frac{\omega}{\omega_H} \right)^2 - AQ^2 \quad (1)$$

here $A = (H_0 - H_H) / Q_H^2$, H – pressure, Q – efficiency, H_0 – pressure at $Q=0$ and $\omega=\omega$, (i.e. in working condition); ω – angular speed of the pump unit, H_H , Q_H , ω_H – nominal values, respectively, pressure, performance and rotation speed of the pump unit (in accordance with passport values).

The pressure description is presented in the following formula.

$$H = H_{st} + KQ^2 \quad (2)$$

here: H_{st} is the static height, K is the resistance coefficient of the pressure pipe, which can be determined as follows.

Taking into account these equations, the power of the pump unit is determined as follows

$$Q = \sqrt{\frac{H_0 \left(\frac{\omega}{\omega_H} \right)^2 - H_{st}}{A + K}} \quad (3)$$

The efficiency of the pumping device can be determined by the well-known formula [15]

$$\eta_N = \frac{N}{N_{mech}} \quad (4)$$

where N is the useful power of the N -pump unit; N_{mech} – mechanical power on the shaft of the pump unit. As a function of pressure and performance, the useful power of the pump unit is determined according to the following

$$N = \frac{\rho HQ}{102} \quad (5)$$

where ρ is the density of the pumped liquid.

Depending on the speed of rotation, the mechanical power on the shaft of the pump device is determined by the following equation

$$N_{\text{mex}} = N_0 \left(\frac{\omega}{\omega_h} \right)^3 + B \left(\frac{\omega}{\omega_h} \right)^2 Q \quad (6)$$

here $B = (N_{\text{mex},x} - N_0)/Q_h$,

H_0 - pure working power of the pumping device, mechanical power of the pumping unit according to the $N_{\text{mex},n}$ -passport.

The moment of resistance is defined by the following expression

$$M_c = M_0 \left(\frac{\omega}{\omega_h} \right)^2 + (M_h - M_0) \frac{\omega}{\omega_h} Q \quad (7)$$

here: M_h - nominal torque resistance

The power consumption of the pumping device is determined by the following expression

$$\begin{aligned} P_1 &= \frac{mU_h^2}{D^2} \left\{ r_1 \left[\left(\frac{r_2}{s} \right)^2 + x_r^2 + \frac{r'_2}{s} x_{\mu h}^2 \right] \right\} \\ D &= \sqrt{\left(\frac{r_1 r'_2}{s} - x_s x_r \sigma \right)^2 + \left(\frac{r'_2}{s} x_s + \frac{r_1}{s} x_{\mu h} \right)^2} \end{aligned} \quad (8)$$

m - the number of phases in the stator,

$$x_r = x'_{2h} + x_{\mu h}$$

x'_1 - active and inductive resistance of the stator coil,

r'_2 and x'_2 - active and inductive resistance of the rotor coil,

s - engine slippage,

$x_{\mu h}$ - inductive resistance of the magnetization process of the motor.

In addition, the electromagnetic power of the pumping device is determined according to the following expression

$$P_e = \frac{mU_n^2 r'_2 x_{\mu n}^2}{sD^2} \quad (9)$$

useful power on the shaft of the motor of the pump unit is determined according to the following expression

$$P_2 = \frac{mU_n^2 r'_2 x_{\mu n}^2}{sD^2} (1 - s) \quad (10)$$

The electromagnetic torque of the drive motor of the pump device is determined by the Kloss equation

$$M_e = \frac{2M_{\text{ek}}(1+qs_k)}{\frac{s}{s_k} + \frac{s_k}{s} + 2qs_k} \quad (11)$$

here s_k -critical slip; M_{ek} -critical electromagnetic torque, which can be determined by the following expression

$$M_{\text{ek}} = \frac{aU_n^2 x_{\mu n}^2 / 2}{x_r \sqrt{[(r_1)^2 + x_s^2][(r_1)^2 + (x_s \sigma)^2] + r_1 x_{\mu n}^2}} \quad (12)$$

The relative value of the motor resistance is determined by the following formula

$$q = \frac{r_1 x_{\mu n}^2 / r'_2}{r_1^2 + x_s^2} \quad (13)$$

In addition, the relative value of the resistance torque of the geared motor is determined by the following expression.

$$M_c = \frac{2\lambda(1+qs_k)}{\frac{s}{s_k} + \frac{s_k}{s} + 2qs_k} \quad (14)$$

At here λ - the difference of the critical electromagnetic torque with respect to the nominal value. Gear motor slippage can be determined by the following expression

$$s = \frac{b_1}{M_{c*}} - b_2 + \sqrt{\left(\frac{b_1}{M_{c*}} - b_2 \right)^2 - s_k^2} \quad (15)$$

where the following correction factors are adopted

$$b_1 = \frac{s_n D_n^2}{2x_r^2 (r_1^2 + x_s^2 \sigma^2)} \quad (16)$$

$$b_2 = \frac{r_1 r'_2 x_{\mu n}^2}{x_r^2 (r_1^2 + x_s^2 \sigma^2)} \quad (17)$$

In addition, taking into account the parameters of the induction motor, the performance of the pumping device is determined according to the following expression

$$Q = Q_n \sqrt{\frac{H_0 \frac{1-2s}{1-2s_H} - H_{ct}}{H_0 - H_H + RQ_H^2}} \quad (18)$$

Also, taking into account the parameters of the induction motor, the useful power of the pump motor is determined according to the following expression

$$N = \frac{\rho HQ}{102} \sqrt{\frac{H_0 \frac{1-2s}{1-2s_H} - H_{ct}}{H_0 - H_H + RQ^2}} \quad (19)$$

In equations (18) and (19), the parameters of the pump unit are expressed by the parameter of the asynchronous motor, that is, by its slip. Thus, the possibility of combining the electrical and mechanical parts of the "asynchronous motor-pump" system is shown.

Then, we express the parameters of the pump device in terms of the parameter of the asynchronous motor, including the mechanical power and the resistance torque of the pump device [25, 26].

$$N_{mex} = N_0 \frac{1-3s}{1-3s_H} + BQ_H \frac{1-2s}{1-2s_H} \sqrt{\frac{H_0 \frac{1-2s}{1-2s_H} - H_{ct}}{H_0 - H_H + RQ^2}} \quad (20)$$

$$M_c = M_0 \frac{1-2s}{1-2s_H} + (M_H - M_0) \frac{1-s}{1-s_H} Q_H \vartheta \sqrt{\frac{H_0 \frac{1-2s}{1-2s_H} - H_{ct}}{H_0 - H_H + RQ^2}} \quad (21)$$

here ϑ - coefficient that takes into account external completeness $\vartheta = 1,05 \div 1,2$

In the same way, we determine the efficiency of the pumping device through the asynchronous motor parameter

$$\eta_N = -(6\rho HQ\varsigma s^2 + 5HQ\varsigma s - \rho HQ\varsigma) / (12\varsigma N_0 s_H - 612\varsigma s N_{mex.H.} s_H - 204\varsigma s N_0 s_H + 204\varsigma s N_{mex.H.} - 306\varsigma N_0 s_H + 306\varsigma s N_{mex.H.} - 6612s N_0 s_H + 102\varsigma N_0 - 102\varsigma N_{mex.H.} + 306N_0 s_H + 204N_0 s_H - 102N_0 s_H) \quad (22)$$

In expression (20), the pressure parameter is determined by the following relation

$$\varsigma = \sqrt{\frac{2sH_0 - 2H_{ct}s_H - H_0 + H_{ct}}{2Q^2Rs_H - Q^2K + 2H_Hs_H - 2H_Hs_H - H_0 + H_{ct}}} \quad (23)$$

Then, the efficiency of the traction motor can be expressed by the following formula.

$$\eta_D = \frac{r_2' x_{\mu H}^2 \left(\frac{1}{s} - 1\right)}{r_1 \left(\frac{r_2^2}{s^2} + x_r^2\right) + \frac{r_2^2}{s} x_{\mu H}^2} \quad (24)$$

by analogy, we define a driven asynchronous motor

$$\cos \varphi = \frac{s r_1 x_r^2 + r_1 r_2' + r_2' x_{\mu H}^2}{s \sqrt{-\frac{(-s^2 r_1^2 x_r^2 + s^2 \sigma x_r x_s - 2s r_1 x_r x_s - r_2'^2 x_s^2 - s r_1 r_2') (x_s^2 x_r^2 + r_2'^2)}{s^4}}} \quad (25)$$

CONCLUSIONS

Therefore, taking into account the technological and electromechanical parameters of the reclamation pumping station, a mathematical model of the "asynchronous motor - pump - pressure pipe - basin" system was developed, and the possibility of influencing the energy parameters and conditions for its increase was also shown.

REFERENCES

1. Bakhodir Ramazonov, Shakhzodbek Sayfiev, Khasan Muradov, Mathematical modeling and research of high capacity lead-acid stabilized accumulator battery, AIP Conf. Proc. **3268**, 020043 (2025) <https://doi.org/10.1063/5.0257860>
2. Khasan Murodov, Askarbek Karshibayev, and Shukhrat Abdullayev, Analysis of the process of balanced charging of the battery group with high capacity, E3S Web of Conferences **548**, 03012 (2024) <https://doi.org/10.1051/e3sconf/202454803012>
3. Muzaffar Xolmurodov., Shaxzod Hakimov., Umida Oripova, Improving energy efficiency in public buildings: Modern technologies and methods, AIP Conf. Proc. **3331**, 040060 (2025) <https://doi.org/10.1063/5.0306935>

4. Boboqulov J., Narzullayev B. Development of a model for diagnosing rotor conditions in the parallel connection of synchronous generators with the network // E3S Web of Conferences. – EDP Sciences, 2024. – T. 525. – C. 06001. <https://doi.org/10.1051/e3sconf/202452506001>
5. Tursunova A. et al. Researching localization of vertical axis wind generators //E3S Web of Conferences. – EDP Sciences, 2023. – T. 417. – C. 03005. <https://doi.org/10.1051/e3sconf/202341703005>
6. Numon Niyozov, Anvar Akhmedov, Shukhrat Djurayev, Botir Tukhtamishev, Asliddin Norqulov, Development of a method for forecasting the specific consumption indicator of electric energy, AIP Conf. Proc. **3331**, 080008 (2025) <https://doi.org/10.1063/5.0305729>
7. Oybek Ishnazarov, Jonibek Mavlonov and Davron Mardonov. Control of ball mill operation depending on ball load and ore properties. E3S Web Conf. Volume **461**, 2023 Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems“ (RSES 2023)
8. Shirinov S.G., J.S. Olimov, I.Z. Jumayev, M.K. Sayidov Analysis of patterns of electricity consumption in mining and processing enterprises. Vibroeng. Procedia 2024, **54**, 308–313. <https://doi.org/10.21595/vp.2024.24073>
9. Jumayev, Z.I., Karshibayev, A.I., Sayidov, M.K., & Shirinov, S.G. Analysis of climate-meteorological and technological factors affecting electricity consumption of mining enterprises. Vibroengineering Procedia, Vol. **54**, pp. 293-299 (Apr. 4 2024). <https://doi.org/10.21595/vp.2024.24047>
10. O.O. Zaripov, S.J. Nimatov, Y.M. Yeralieva, S.O. Zaripova, M.A. Zakirov, D.M. Nomozova, J.T. Akhmedov, Akram Tovbaev. Calculation of the nominal power and electrical energy of the hydro power plant on an electronic calculator. E3S Web Conf. Volume **486**, 2024. IX International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development (AGRITECH-IX 2023). <https://doi.org/10.1051/e3sconf/202448601027>
11. Abdurakhim Taslimov., Farrukh Rakhimov., Feruz Rakhimov., Vaxobiddin Mo'minov, Analysis of the results of sampling the surfaces of sections of rural electric networks, AIP Conf. Proc. **3331**, 030041 (2025) <https://doi.org/10.1063/5.0305783>
12. Sulton Amirov, Aminjon Ataullayev, Sine-cosine rotating transformers in zenith angle converters, E3S Web of Conferences **525**, 03010 (2024) GEOTECH-2024, <https://doi.org/10.1051/e3sconf/202452503010>
13. Sultan F. Amirov, Nodir O. Ataullayev, Amin O. Ataullayev, Bobur Q. Muxammadov, and Ahror U. Majidov, Methods for reducing the temperature components of magnetomodulation DC convertors errors, E3S Web of Conferences **417**, 03011 (2023) GEOTECH-2023 <https://doi.org/10.1051/e3sconf/202341703011>
14. Raximov, F., Taslimov, A., Majidov, A., & Norqulov, A. (2024). Optimization of losses by switching to higher voltage in distribution networks. In E3S Web of Conferences (Vol. **525**, p. **03009**). EDP Sciences. <https://doi.org/10.1051/e3sconf/202452503009>
15. A.Tovboev, I.Togayev, I.Uzoqov, G. Nodirov, Use of reactive power sources in improving the quality of electricity, E3S Web of Conferences 417, 03001 (2023) <https://doi.org/10.1051/e3sconf/202341703001>
16. I.Togayev, A.Tovbaev, G. Nodirov, Assessment of the quality of electricity by applying reactive power sources, E3S Web of Conferences, 525, 03004 (2024) <https://doi.org/10.1051/e3sconf/202452503004>
17. G.Boynazarov, A. Tovbaev, U. Usarov, Methology of experimental research of voltage quality in electrical circuit, E3S Web of Conferences 548, 03009 (2024) <https://doi.org/10.1051/e3sconf/202454803009>
18. O.Jumaev, M. Ismoilov, D. Rahmatov, A. Qalandarov, Enhancing abrasion resistance testing for linoleum and rubber products: A proposal for improved device operation, E3S Web of Conferences 525, 05012 (2024) <https://doi.org/10.1051/e3sconf/202452505012>
19. Ataullayev N.O., Muxammadov B.Q., Idieva A.A., Research of dynamic characteristics of magnetic modulation current converter with negative feedback // International Journal of Advanced Research in Science, Engineering and Technology, India, 2020, November, Vol. 7, Issue 11. – P. 15749-15752. http://www.ijarset.com/volume-7-issue-11.html?utm_source=chatgpt.com
20. N. Ataullayev, A. Norqulov, B. Muxammadov, A. Majidov, I. Tog'ayev. Principles of protection against single phase earth faults in networks with capacitive current compensation. E3S Web of Conferences, 548, 06008 (2024). <https://doi.org/10.1051/e3sconf/202454806008>
21. Mukhtorkhon Ibadullayev; Shavkat Begmatov; Akram Tovbaev. Subharmonic resonance in three-phase ferroresonant circuits with common magnetic cores. AIP Conf. Proc. **3152**, 050019 (2024) <https://doi.org/10.1063/5.0218907>
22. Akram Tovbaev, Muxtarxon Ibadullayev and Mohinur Davronova. Study of subharmonic oscillation processes in ferroresonance circuits. E3S Web of Conf. Volume **525**, 2024. IV International Conference on Geotechnology, Mining and Rational Use of Natural Resources (GEOTECH-2024). <https://doi.org/10.1051/e3sconf/202452503008>

23. Narzullayev B. S., Eshmirzaev M. A, Causes of the appearance of current waves in high voltage electric arc furnaces, and methods of their reduction, E3S Web of Conferences. – EDP Sciences, 2023. – Т. 417. – С. 03003. <https://doi.org/10.1051/e3sconf/202341703003>

24. Akram Tovbaev., Islom Togaev., Uktam Usarov., Gulom Nodirov, Reactive power compensation helps maintain a stable voltage profile across the network, AIP Conf. Proc. 3331, 060014 (2025). <https://doi.org/10.1063/5.0307209>

25. Asliddin Norqulov, Feruz Raximov, Methods for evaluating financial and economic effectiveness of investment projects in the energy sector with time factor considerations, AIP Conf. Proc. 3331, 030070-1–030070-6. <https://doi.org/10.1063/5.0306104>

26. Shukhrat Abdullaev., Ziyodullo Eshmurodov., Islom Togaev, A systematic analysis of the gradual increase in quality indicators of electricity using reactive power sources involves several steps, AIP Conf. Proc. 3331, 040051 (2025). <https://doi.org/10.1063/5.0306786>

27. Turdibekov K. et al. Experimental and statistical methods for studying the modes of electric power systems under conditions of uncertainty //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 452. – С. 04002. <https://doi.org/10.1051/e3sconf/202345204002>

28. Bobur Narzullayev; Javokhir Boboqulov, Improving reliability based on diagnostics of the technical condition of electric motor stator gutters, AIP Conf. Proc. 3331, 030032 (2025). <https://doi.org/10.1063/5.0305735>

29. Abdurakhim Taslimov., Feruz Raximov., Farrukh Rakhimov., Iles Bakhadirov, Optimal parameters and selection criteria for neutral grounding resistors in 20 kv electrical networks, AIP Conf. Proc. 3331, 030048 (2025) <https://doi.org/10.1063/5.0306108>

30. Islom Togaev., Akram Tovbaev., Gulom Nodirov, Systematic analysis of reactive power compensation in electric networks is essential for improving electricity quality enhancing system stability, and reducing operational costs, AIP Conf. Proc. 3331, 030099 (2025) <https://doi.org/10.1063/5.0305740>

31. Urishev, B., and Fakhriddin Nosirov. 2025. “Hydraulic Energy Storage of Wind Power Plants.” Proceedings of the International Conference on Applied Innovation in IT.

32. Mukhammadiev, M., K. Dzhuraev, and Fakhriddin Nosirov. 2025. “Prospects for the Development of the Use of Pumped Storage Power Plants in the Energy System of the Republic of Uzbekistan.” Proceedings of the International Conference on Applied Innovation in IT.

33. Urishev, B., Fakhriddin Nosirov, and N. Ruzikulova. 2023. “Hydraulic Energy Storage of Wind Power Plants.” E3S Web of Conferences, 383. <https://doi.org/10.1051/e3sconf/202338304052>

34. Urishev, B., S. Eshev, Fakhriddin Nosirov, and U. Kuvatov. 2024. “A Device for Reducing the Siltation of the Front Chamber of the Pumping Station in Irrigation Systems.” E3S Web of Conferences, 274. <https://doi.org/10.1051/e3sconf/202127403001>

35. Turabdjanov, S., Sh. Dungboev, Fakhriddin Nosirov, A. Juraev, and I. Karabaev. 2021. “Application of a Two-Axle Synchronous Generator Excitations in Small Hydropower Engineering and Wind Power Plants.” AIP Conference Proceedings. <https://doi.org/10.1063/5.0130649>

36. Urishev, B., Fakhriddin Nosirov, Obid Nurmatov, S. Amirov, and D. Urishova. 2021. “Local Energy System Based on Thermal, Photovoltaic, Hydroelectric Stations and Energy Storage System.” AIP Conference Proceedings. <https://doi.org/10.1063/5.0306446>

37. Nurmatov, Obid, Fakhriddin Nosirov, Khusniddin Shamsutdinov, and Dildora Obidjonova. 2025. “Research on Control Systems for Automatic Excitation Regulation Utilizing Fuzzy Logic Methodology.” AIP Conference Proceedings. <https://doi.org/10.1063/5.0306119>

38. Nurmatov O. Large pumping stations as regulators of power systems modes. Rudenko International Conference “Methodological problems in reliability study of large energy systems” (RSES 2020), E3S Web of Conferences 216, 01098(2020) <https://doi.org/10.1051/e3sconf/202021601098>

39. Nurmatov O., Makhmudov T.: Pulatov N. Control of the excitation system of synchronous motors pumping stations //AIP Conference Proceedings, 3152, 040008 (2024) <https://doi.org/10.1063/5.0218781>

40. Nurmatov O., Nosirov F., Shamsutdinov K., Obidjonova D. Research on control systems for automatic excitation regulation utilizing fuzzy logic methodology. AIP Conference Proceedings AIP Conf. Proc. 3331, 040081 (2025) <https://doi.org/10.1063/5.0306119>

41. Makhmudov T.: Nurmatov O., Ramatov A.N., Site Selection for Solar Photovoltaic Power Plants Using GIS and Remote Sensing Techniques//AIP Conference Proceedings, 3152, 060002 (2024) <https://doi.org/10.1063/5.0218779>

42. Urishev B., Nosirov F., Nurmatov O., Amirov Sh., Urishova D. Local energy system based on thermal, photovoltaic, hydroelectric stations and energy storage system AIP Conf. Proc. 3331, 070015 (2025) <https://doi.org/10.1063/5.0306446>

43. Rismukhamedov D., Shamsutdinov K., Magdiev K., Peysenov M., Nurmatov O. Construction of pole-switchable windings for two-speed motors of mechanisms with a stress operating mode AIP Conference Proceedings *AIP Conf. Proc.* 3331, 040059 (2025) <https://doi.org/10.1063/5.0305963>

44. Rabatuly M., Myrzathan S.A., Toshov J.B., Nasimov J., Khamzaev A. Views on drilling effectiveness and sampling estimation for solid ore minerals. *Комплексное Использование Минерального Сырья.* №1(336), 2026. <https://doi.org/10.31643/2026/6445.01>

45. Toshov J.B., Rabatuly M., Khaydarov Sh., Kenetayeva A.A., Khamzayev A., Usmonov M., Zheldikbayeva A.T. Methods for Analysis and Improvement of Dynamic Loads on the Steel Wire Rope Holding the Boom of Steel Wire Rope Excavators. *Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources* 2026; 339(4):87-96 <https://doi.org/10.31643/2026/6445.43>

46. Zokhidov O.U., Khoshimov O.O., Khalilov Sh.Sh. Experimental analysis of microges installation for existing water flows in industrial plants. III International Conference on Improving Energy Efficiency, Environmental Safety and Sustainable Development in Agriculture (EESTE2023), E3S Web of Conferences. Том 463. Страницы 02023. 2023. <https://doi.org/10.1051/e3sconf/202346302023>

47. Zokhidov O.U., Khoshimov O.O., Sunnatov S.Z. Selection of the type and design of special water turbines based on the nominal parameters of Navoi mine metallurgical combine engineering structures. *AIP Conf. Proc.* 3331, 050022 (2025). <https://doi.org/10.1063/5.0306554>

48. Khamzaev A.A., Mambetsheripova A., Arislanbek N. **Thyristor-based control for high-power and high-voltage synchronous electric drives in ball mill operations/ E3S Web Conf. Volume 498, 2024/ III International Conference on Actual Problems of the Energy Complex: Mining, Production, Transmission, Processing and Environmental Protection (ICAPE2024) DOI: <https://doi.org/10.1051/e3sconf/202449801011>**

49. Toshov B.R., Khamzaev A.A. Development of Technical Solutions for the Improvement of the Smooth Starting Method of High Voltage and Powerful Asynchronous Motors/AIP Conference Proceedings 2552, 040018 (2023); <https://doi.org/10.1063/5.0116131> Volume 2552, Issue 1; 5 January 2023

50. Toshov B.R., Khamzaev A.A., Sadovnikov M.E., Rakhmatov B., Abdurakhmanov U./ Automation measures for mine fan installations/ SPIE 12986, Third International Scientific and Practical Symposium on Materials Science and Technology (MST-III 2023), 129860R (19 January 2024); doi: 10.1117/12.3017728. Third International Scientific and Practical Symposium on Materials Science and Technology (MST-III 2023), 2023, Dushanbe, Tajikistan.

51. Toshov B.R., Khamzaev A.A., Namozova Sh.R. Development of a circuit for automatic control of an electric ball mill drive. *AIP Conference Proceedings* 2552, 040017 (2023) Volume 2552, Issue 1; 5 January 2023.

52. Toirov, O., Pirmatov, N., Khalbutaeva, A., Jumaeva, D., Khamzaev, A. Method of calculation of the magnetic induction of the stator winding of a spiritual synchronous motor. E3S Web of Conferences Эта ссылка отключена., 2023, 401, 04033

53. O. Toirov, A. Khalbutaeva, Z. Toirov. Calculation of the magnetic flux with considering nonlinearities of saturation of the magnetic circuit of synchronous motors, // 3rd International Scientific and Technical Conference on Actual Issues of Power Supply Systems, ICAIPSS 040022, (2023). <https://doi.org/10.1063/5.0218821>

54. O. Toirov, S. Khalikov. Research and Evaluation of the Reliability Indicators of Pumping Units for Mechanical Irrigation of the Pumping Station “Kyzyl-Tepa”, // Power Technology and Engineering, 57 (5), (2024). <https://doi.org/10.1007/s10749-024-01720-2>

55. O. Toirov, M. Taniev, B. Safarov, Z. Toirov. Simulation model of an asynchronous generator integrated with a power supply system at different wind speeds, // AIP Conference Proceedings, 3331 (1), 060025, (2025). <https://doi.org/10.1063/5.0305672>

56. O. Toirov, Sh. Azimov, Z. Toirov. Improving the cooling system of reactive power compensation devices used in railway power supply // AIP Conference Proceedings, 3331, 1, 050030, (2025). <https://doi.org/10.1063/5.0305670>

57. O. Toirov, W. Yu. Non-Intrusive Load Monitoring Based on Image Load Signatures and Continual Learning // Proceedings of 2025 2nd International Conference on Digital Society and Artificial Intelligence, (2025) <https://doi.org/10.10.1145/3748825.3748963>

58. O. Toirov, Sh. Azimov, Z. Najmidtinov, M. Sharipov, Z. Toirov. Improvement of the cooling system of reactive power compensating devices used in railway power supply // E3S Web of Conferences, 497, 01015, (2024). <https://doi.org/10.1051/e3sconf/202449701015>

59. Melikuziev M.V. Determination of the service area and location of transformer substations in the city power supply system. E3S Web of Conferences 384, 01033 (2023) RSES 2022. <https://doi.org/10.1051/e3sconf/202338401033>

60. Melikuziev M.V., Usmonaliev S., Khudoyberdiev N., Sodikov J., Imomaliev Z. Issues of the design procedure for the power supply system. AIP Conference Proceedings 3152, 040031 (2024). <https://doi.org/10.1063/5.0218873>