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Abstract. This paper is devoted to developing an integrated functional architecture for controlling electric drives in pump 

stations under energy-saving and stable operating modes, and to substantiating its technical effectiveness. The proposed 

scheme combines, within a single control loop, flexible adjustment of motor speed in accordance with process demands 

using a frequency converter, limitation of reactive power flow and improvement of the power factor through a capacitor 

bank, as well as continuous diagnosis of power-quality parameters based on a phase meter. Coordinated control of valves 

and actuating mechanisms is implemented via the AUMA module, while local control units independently perform the 

protection and signaling functions of each subsystem, ensuring the modular reliability of the overall system. Based on 

real-time data, the central control computer carries out monitoring, operating-mode selection, and optimization tasks, 

helping maintain the pump unit’s operating point near the optimal region. As a result, conditions are created for reducing 

hydraulic, volumetric, cavitation, electrical, and transient losses, decreasing network loading, and extending equipment 

service life. The proposed approach is characterized as a practical solution aimed at improving the energy efficiency of 

dewatering and process pumping systems in mining and industrial environments. 

INTRODUCTION 

Dewatering of deep underground horizons, maintaining dry drifts and stopes, and conveying water for 

technological processes are critical prerequisites for the uninterrupted operation of the mining industry. In deep 

mines, water inflow is typically non-stationary: it varies over time due to seasonal and hydrogeological factors, 

changes in fracture permeability, and the progressive development of mining works. At the same time, the depth and 

productivity of boreholes and sumps are often heterogeneous, while long-distance pipelines experience continuously 

evolving hydraulic resistance caused by scaling, corrosion, sediment deposition, and changes in flow regime. Under 

such complex and dynamic conditions, pumping stations become one of the dominant consumers of electrical power 

in a mining enterprise [1-3]. 

Available industrial evidence indicates that pumping systems may account for a significant share of mine 

electricity consumption, in some cases reaching several tens of percent of total power demand. This high energy 

burden is intensified by the widespread use of conventional control strategies in which pump units operate at 

constant speed regardless of actual process requirements. When demand fluctuates and head or flow requirements 

decrease, fixed-speed operation leads to a systematic mismatch between the supplied hydraulic energy and the 

required technological load. Consequently, throttling losses increase, the operating point deviates from the best 

efficiency region, and the overall specific energy consumption rises. In practice, this inefficiency can translate into 

an additional 20–30% energy use beyond the real-time necessity, particularly in networks where flow regulation is 

performed by valves rather than speed control [4-9]. 

These challenges make the transition to intelligent, adaptive pump control not only desirable but strategically 

necessary for modern mining. Optimal control based on real-time monitoring of inflow, pressure, and energy 

indicators enables the pump operating point to be continuously aligned with the evolving hydraulic demand. Such 

approaches can reduce hydraulic and transient losses, mitigate cavitation risk during unstable inflow periods, and 

lower mechanical stress on equipment. Moreover, the integration of variable frequency drives with power-factor 
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correction and diagnostic modules provides a pathway to improving both the electrical and hydraulic performance of 

the station as an integrated system. Therefore, the development of intelligent, optimization-based control 

frameworks for deep-mine pumping infrastructure represents a high-impact engineering direction aimed at reducing 

energy costs, enhancing operational reliability, and extending the service life of critical dewatering assets [10-16]. 

EXPERIMENTAL RESEARCH 

The energy efficiency of pump units is determined by their internal hydraulic, mechanical, volumetric, and 

electrical losses. The largest share of losses is observed in hydraulic processes: flow separation in the impeller 

region, increased turbulence, and friction in pipelines cause part of the pressure to be converted into heat. Internal 

geometric mismatches and deviations of the flow direction further intensify this process. Mechanical losses are 

associated with friction in bearings, gland seals, and around the shaft, which increases the torque required from the 

motor. Volumetric losses, in turn, reduce the pump’s actual delivery due to backflow and leakage. A critical drop in 

pressure leads to cavitation, accelerating impeller wear. Electrical losses arise from the motor’s thermal and 

magnetic characteristics. Frequent speed changes also cause additional energy consumption in dynamic (transient) 

regimes. The combined effect of these factors typically limits the overall pump efficiency to the range of 55-75%. 

Figure 1 presents a loss diagram of the pump system [17-23]. 

 

FIGURE 1. Distribution of losses in the pump system 

Linear variation of a pump’s rotational speed has a direct impact on the hydraulic, mechanical, and energy 

performance of the system. When the speed is reduced, the flow rate decreases proportionally, while the head 

decreases in proportion to the square of the speed. As a result, power consumption drops sharply according to the 

cubic law, leading to a significant improvement in energy efficiency. The reduction in flow velocity also decreases 

friction losses in the pipeline network and contributes to the stabilization of hydraulic processes. Speed optimization 

affects volumetric losses as well: because the pressure differential is reduced, backflow decreases and the pump’s 

actual delivery increases. Mechanical losses are reduced due to lower loading of bearings and seals, which extends 

the service life of the unit. A decrease in rotational speed also reduces the probability of cavitation, since suction-

side pressure variations become less pronounced and critical conditions at the impeller inlet are less likely to occur. 

The mathematical expressions describing the reduction of losses achieved through linear motor-speed control are 

presented below in Eqs. (1), (2), and (3) [24-30]. 
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Linear control of the motor speed also leads to the optimization of electrical energy consumption. Thermal and 

18

6

4

1

5

2
3

1

60

Hydraulic losses

Internal hydraulic losses

Mechanical losses

Seal (gland) losses

Volumetric losses (backflow)

Cavitation losses

Electrical losses (motor)

Dynamic (transient) losses

Output power



magnetic losses in the rotor–stator pair decrease, thereby improving the overall efficiency of the motor. The smooth 

nature of the control process eliminates excessive energy use during transient regimes, which enhances the overall 

stability of the system. In general, linear pump-speed control significantly reduces hydraulic losses, optimally 

decreases mechanical and volumetric losses, and improves system performance by lowering electrical energy 

consumption. For this reason, adaptive speed control is considered one of the most effective energy-saving strategies 

in modern pump stations [31-36]. 

RESEARCH RESULTS 

Linear control of the motor speed also leads to the optimization of electrical energy consumption. Thermal and 

magnetic losses in the rotor-stator pair are reduced, thereby improving the overall efficiency of the motor. The 

smooth nature of the control process eliminates excessive energy use during transient regimes, which enhances the 

overall stability of the system. In general, linear control of pump speed significantly reduces hydraulic losses, 

optimally decreases mechanical and volumetric losses, and improves system performance by lowering electrical 

energy consumption. Therefore, adaptive speed control is considered one of the most effective energy-saving 

strategies in modern pump stations [37-41]. 

 

FIGURE 2. Functional control scheme of the pump unit 

This text shows the logical outcome of the proposed control scheme. Since the frequency converter adjusts the 

motor speed to match the load, the pump operating point shifts closer to the optimal region, leading to lower 

hydraulic, volumetric, and cavitation losses. The capacitor bank improves the power factor and helps reduce 

network current and electrical losses. The phase meter and the central control computer monitor power-quality 

indicators, limiting excessive heating and unstable operating conditions caused by phase unbalance and deviations in 

operating mode. Fig.3 presents the energy efficiency of the pump system under the baseline mode and under the 

proposed control scheme [42-45]. 

 

FIGURE 3. Energy efficiency of the pump system in the baseline mode and under the proposed control scheme 
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The unit and local control blocks synchronize the control of valves and actuating mechanisms, thereby reducing 

extra losses that typically arise during transient regimes. In general, the diagram indicates that after implementing 

the new scheme, the main share of losses remains within the hydraulic group, while electrical and dynamic losses 

represent a relatively smaller fraction. Therefore, the next optimization stage with the greatest additional benefit may 

involve reducing hydraulic resistance in the pipeline network, bringing the operating point closer to the BEP, and 

improving suction conditions. Figure 4 presents the loss diagram of the pump system [46-48]. 

 

FIGURE 4. Distribution of losses in the pump system 

CONCLUSION 

Achieving energy and resource savings was made possible by intelligent control of the pump unit speed. 

Experimental results show that hydraulic losses were reduced by 7%, internal hydraulic losses by 1%, mechanical 

losses by 1%, volumetric losses by 1%, and electrical losses by 1%. As a result, the overall efficiency of the pump 

unit increased from 60% to 71% (an improvement of 11 percentage points). 
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